نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زراعت، گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان-دانشگاه تهران، پاکدشت، تهران

2 استادیار گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان – دانشگاه تهران، پاکدشت، تهران

3 استاد گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان- دانشگاه تهران، پاکدشت، تهران

چکیده

هدف از این تحقیق ارزیابی ژنوتیپ‏های مختلف کلزا در واکنش به تنش‏های دمایی مختلف بود. با استفاده از دماهای اصلی (کاردینال) شاخص‌های تحمل به دمای بالا و پایین تعیین گردید. سپس، ژنوتیپ‏های مختلف از این نظر ارزیابی شدند. به این منظور آزمایش جوانه‏ زنی با 3 تکرار 50 بذری در درون اتاقک (انکوباتور)های رشد با دماهای ثابت 5، 10، 15، 20، 25 و 30 درجه‌ سانتی‏گراد روی 10 ژنوتیپ کلزا انجام گرفت. در نهایت، پاسخ سرعت جوانه‏زنی به دما با تابع دوتکه‌ای و درصد جوانه‏زنی با تابع بتا توصیف شد. با کمک دماهای اصلی برای درصد و سرعت جوانه‏زنی، تحمل به دماهای بالا و پایین برای ژنوتیپ‏های مختلف تعیین شد. نتایج نشان داد که میانگین دماهای کمینه، بهینه و بیشینه برای درصد جوانه‏ زنی به‏ ترتیب برابر 4.99، 18.23 و 34.20 درجه سانتی‏گراد بود و همچنین میانگین دماهای کمینه، بهینه و بیشینه برای سرعت جوانه‏ زنی به ‏ترتیب برابر 6.18، 24.76 و 39.43 درجه سانتی‏گراد بود. شاخص ‏های تحمل به گرما و سرما نیز میان ارقام مختلف متفاوت بودند. رقم اکاپی هم در شاخص تحمل به گرما (5.95) و هم در تحمل به سرما (8.48) متحمل‏ترین رقم شناخته شد. رقم ایکس پاور پایین‌ترین تحمل را هم در شاخص‏های تحمل به گرما (4.78) و هم به سرما (6.50) داشت. همچنین، پتانسیل القای خفتگی ثانویه ناشی از تنش خشکی در رقم اکاپی (حدود 40%) در بالاترین مقدار نسبت به سایر ارقام بود. به نظر می‏رسد، ارتباطی بین پتانسیل القای خفتگی ثانویه و تحمل به تنش‏های دمایی وجود داشته باشد که نیاز به مطالعه بیشتر دارد.

کلیدواژه‌ها

 
Abdul-Baki, A.A., 1991. Tolerance of tomato cultivars and selected germplasm to heat stress. American Society for Horticultural Science, 116, 1113–1116.
Akramghaderi, F., Soltani, A., Sadeghipour, H.R., 2008. Cardinal temperature of germination in medical pumpkin (Cucurbita pepo conver pepo var. styriaca), borago (Borago officinalis L.) and black cumin (Nigella sativa L.). Asian Journal of Plant Science, 2, 101-109.
Bar-Tsur, A., Rudich, J., Bravdo, B., 1985. High temperature effects on CO2 gas exchange in heat-tolerant and sensitive tomatoes. American Society for Horticultural Science, 110, 582–586.
Bibi, A.C., Oosterhuis, D.M., Gonias, E.D., Bourland, F.M., 2004. Screening a diverse set of cotton cultivars for high temperature tolerance. Arkansas Agricultural Experiment Station Res. Series 533; Summaries Arkansas Cotton Res.
Charles, W.B., Harris, R.E., 1972. Tomato fruit-set at high and low temperatures. Canadian Journal of Plant Science, 52, 497–506.
Chen, H., Shen, Z.Y., Li, P.H., 1982. Adaptability of crop plants to high temperature stress. Crop Science, 22, 719–725.
Coons, J.M., Kuehl, R.Q., Simons, N.R., 1990. Tolerance of ten lettuce cultivars to high temperature combined with NaCl during germination. American Society for Horticultural Science, 115, 1004–1007.
Ellis, R.H., 1992. Seed and seedling vigour in relation to crop growth and yield. Plant Growth Regulation, 11, 249–255.
Farzaneh, S., Soltani, E., 2011. Relationships between hydrotime parameters and seed vigor in sugar beet. Seed Science and Biotechnology, 5, 7–10.
Farzaneh, S., Soltani, E., Zeinali, E.,Ghaderi-Far, F., 2014. Screening oil seed rape germination for thermotolerance using a laboratory-based method. Seed Technology. 36(1), 15-27. [In Persian with English summary].
Gulden, R.H., Thomas, A.G., Shirtliffe, S.J., 2004. Relative contribution of genotype, seed size and environment to secondary seed dormancy potential in Canadian spring oilseed rape (Brassica napus).Weed Research 44, 97–106.
Hanna, H.Y., Hernandez, T.F., 1982. Response of six tomato genotypes under summer and spring weather conditions in Louisiana. Horticultural Science, 17, 758–769.
Jame, Y.W., Cutforth, H.W., 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124, 207–218.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K., 1999. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcriptional factor. Nature Biotechnology, 17, 287–291.
Klos, K.L.E., Brummer, E.C., 2000a. Response of six alfalfa populations to selection
under laboratory conditions for germination and seedling vigor at low temperatures. Crop Science, 40, 959–964.
Klos, K.L.E., Brummer, E.C., 2000b. Field response to selection in alfalfa for germination rate and seedling vigor at low temperatures. Crop Science, 40, 1227–1232.
Lang, P., Zhang, C.K., Ebel, R.C., Dane, F., Dozier, W.A., 2005. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene. 359, 111–118.
Lopez-Castaneda, C., Richards, R.A., Farquhar, G.D., Williamson, R.E., 1996. Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Science. 36, 1257–1266.
Marshall, B., Squire, G.R., 1996. Non-linearity in rate-temperature relations of germination in oilseed rape. Experimental Botany. 47, 1369–1375.
McWilliam, S.C., Stokes, D.T., Scott, R.K., 1998. Establishment of oilseed rape: the influence of physical characteristics of seedbeds and weather on germination, emergence and seedling survival. Project Report. No. OS31, HGCA, London.
Momoh, E.J.J., Zhou, W.J., Kristiansson, B., 2002. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. European Weed Research Society Weed Research. 42, 446–455.
Ramin, A.A., 1997. The influence of temperature on germination of taree Irani (Allium ampeloprasum L. spp. iranicum W.). Seed Science and Technology. 25, 414-426.
Roberts, E.H., 1988. Temperature and seed germination. In: Long, S.P., Woodward, F.I., (eds.), Plants and Temperature. Symposia of the Society for Experimental Biology, 42, 109–132.
Saita, A., Patanè, C., Guarnaccia, P., 2011. Genotypes screening for cold tolerance during germination in sorghum [Sorghum bicolor (L.) Moench] for energy biomass. Proc. 19th European Biomass Conference and Exhibition, Berlin, Germany, 552–555.
Seefeldt, S.S., Kidwell, K.K., Waller, J.E., 2002. Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crops Research, 75, 47–52.
Seepaul, R., Macoon, B., Reddy, K.R., Baldwin, B.S., 2011. Switchgrass (Panicum virgatum L.) intraspecific variation and thermo-tolerance classification using in vitro seed germination assay. American Journal of Plant Sciences, 2, 134–147.
Setimela, P.S., Andrews, D.J., Partridge, J., Eskridge, K.M., 2005. Screening sorghum seedlings for heat tolerance using a laboratory method. European Journal of Agronomy, 23, 103–107.
Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., Mohammadi, V., 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research. 98, 222–229.
Soltani, A., Robertson, M.J., Torabi, B., Yousedi-Daz, M., Sarparast, R., 2006. Model ing seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology. 138, 156–167.
Soltani, A., Galeshi, S., Zeinali, E., LatifiI. N., 2002. Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Science and Technology. 30, 51–60.
Soltani, E., Soltani,A., Galeshi, S., Ghaderi-Far, E., Zeinali, F., 2013. Seed bank modelling of volunteer oil seed rape: from seeds fate in the soil to seedling emergence. Planta Daninha. 31: 267–279.
Soltani, A., 2007. Application and Using of SAS Program in Statistical Analysis. Jihad- Daneshgahi Press, Mashhsd, Iran, 180p. [In Persian]
Soltani, E., Galeshi, S., Kamkar, B., Akramghaderi, F., 2008. Modeling seed aging effects on the response of germination to temperature in wheat. Seed Science and Biotechnology. 2, 32–36.
Soltani, E., Galeshi, S., Kamkar, B., Akramghaderi, F., 2009. The effect of seed aging on seedling growth as affected by environmental factors in wheat. Research of Environmental Sciences. 3, 184–192.
Soltani, E., Soltani, A., Oveisi, M., 2013. Modeling seed aging effects on the wheat seedling emergence in drought stress: optimizing Germin program to predict emergence pattern. Crop Improvement. 15, 147-160.
Soltani, E., Adeli, R., Akbari, G.A., Ramshini, H., 2017. Application of hydrotime model to predict early vigor of rapeseed (Brassica napus L.) under abiotic stresses. Acta Physiologiae Plantarum. 39, 252.
Squire, G.R., 1999. Temperature and heterogeneity of emergence time in oilseed rape. The Annals of Applied Biology. 135, 439–447.
Steinmaus, S.J., Prather, T.S., Holt, J.S., 2000. Estimation of base temperatures for nine weed species. Experimental Botany. 5, 275–286.
Stevens, M.A., Rudich, J., 1987. Genetic potential for overcoming physiological limitations on adaptability, yield, and quality of the tomato. Horticultural Science. 13, 673–679.
Tanaka, A., Fujita, K., Kikuchi, K., 1974. Nutrio-physiological studies on the tomato plant: photosynthetic rates of individual leaves in relation to the dry matter production in plants. Soil Science and Plant Nutrition. 20, 173–183.
TeKrony, D.M., Egli, D.B., 1991. Relationship of seed vigor to crop yield: a review, Crop Science. 31, 816–822.
Thakur, P., Kumar, S., Malik, J.A., Berger, J.D. and Nayyar, H., 2010. Cold stress effects on reproductive development in grain crops: an overview, Environmental and Experimental Botany. 67, 429–443.
Tuck, C., Tan, D., Bange, M., Stiller, W., 2008. Cultivar cold tolerance screening using germination chill protocols. Australian Agronomy Conference, Australian Society of Agronomy. Retrieved from http:// www.regional.org.au/au/asa/2010/crop-production/ herbicide/ 6966_ tuckca. Htm # TopOfPage (verified 21 Jan 2015).
Weber, E.A., Frick, K., Gruber, S., Claupein, W., 2010. Research and development towards a laboratory method for testing the genotypic predisposition of oilseed rape (Brassica napus L.) to secondary dormancy. Seed Science and Technology. 38, 298–310.
Zeinali, E., Soltani, A., Galeshi, S., Sadati, S.J., 2010. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. Electronic Journal of Crop Production. 3, 23-42.