Ahmed, S., Opena, J.L., Chauhan, B.S. 2015. Seed Germination Ecology of Doveweed (Murdannia nudiflora) and Its Implication for Management in Dry-Seeded Rice. Weed Science. 63, 491-501.
Alimagham, S.M., Ghaderi-Far, F., 2014. Hydrotime model: Introduction and application of this model in seed researches. Environmental Stresses in Crop Sciences.
7(1), 41-52. [In Persian with English Summary].
Ansari, O., Choghazardi, H.R., Sharif Zadeh, F., Nazarli, H., 2012. Seed reserve utilization and seedling growth of treated seeds of mountain rye (Secale montanum) as affected by drought stress. Cercetări Agronomice în Moldova. 2(150), 43-48.
Ansari, O., Gherekhloo, J., Kamkar, B., Ghaderi-Far, F., 2016. Breaking seed dormancy and determining cardinal temperatures for Malva sylvestrisusing nonlinear regression. Seed Science and Technology. 44(3), 1-14.
Ansari, O., Gherekhloo, J., Ghaderi-Far, F., Kamkar, B., 2016. Application of hydro time model for quantification of Malva sylvestris L. germination response to water potential.
Environmental Stresses in Crop Sciences.
Accepted. [In Persian with English Summary].
Ashraf, M., Foolad, M.R., 2005. Presowing seed treatment, a shot gun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy. 88, 223-271.
Balbaki, R.Z., Zurayk, R.A., Blelk, M.M., Tahouk, S.N., 1999. Germination and seedling development of drought tolerant and susceptible wheat under moisture stress. Seed Science and Technology. 27, 291-302.
Bloomberg M., Sedcole J.R., Mason E.G., Buchan, G., 2009. Hydrothermal time germination models for radiata pine (Pinus radiata D.Don). Seed Science Research. 19, 171–182.
Bradford, K.J., 1990. A water relation analysis of seed germination rates. Plant Physiology. 94, 840-849.
Bradford, K.J., 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science. 50, 248-260.
Bradford, K.J., Still, D.W., 2004. Application of hydrotime analysis in seed testing. Seed Technology. 26, 74-85.
Cardoso, V.J.M., Bianconi, A., 2013. Hydrotime model can describe the response of common bean (Phaseolus vulgaris L.) seeds to temperature and reduced water potential. Acta Scientiarum. 35(2), 255-261.
Cheng, Z., Bradford, K., 1999. Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany. 330, 89-99.
Dahal, P., Bradford, K.J., 1990. Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. II. Germination at reduced water potential. Journal of Experimental Botany. 41, 1441–1453.
Derakhshan, A., Akbari, H., Gherekhloo, J., 2014. Hydrotime modeling of Phalaris minor, Amaranthus retrofkexus and A. Blitoides. Iranian Journal of Seed Science and Research. 1(1): 93-97. [In Persian with English Summary].
Derakhshan, A., Gherekhloo, J., Vidal, R.B., De Prado, R., 2013. Quantitative description of the germination of littleseed canarygrass (Phalaris minor) in response to temperature. Weed Science. 62, 250-257.
Dumur, D., Pilbeam, C.J., Craigon, J., 1990. Use of the Weibull Function to Calculate Cardinal Temperatures in Faba Bean. Journal of Experimental Botany. 41, 1423–1430.
Grundy, A.C., Phelps, K., Reader, R.J., Burston, S., 2000. Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytology. 148, 433–444.
Guerke, W.R., Gutormson, T., Meyer, D., McDonald, M., Mesa, D., Robinson, J.C., TeKrony, D., 2004. Application of hydrotime analysis in seed testing. Seed Technology. 26 (1), 75- 85.
Huarte, R., 2006. Hydrotime analysis of the effect of fluctuating temperatures on seed germination in several non-cultivated species. Seed Science and Technology. 34, 533-547.
Masin, R., Zuin, M.C., Archer, D.W., Forcella, F., Zanin, G., 2005. Weed Turf: a predictive model to aid control of annual summer weeds in turf. Weed Science. 53, 193–201.
Mesgaran, M.B., Mashhadi, H.R., Alizadeh, H., Hunt, J., Young, K.R., Cousens, R.D., 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research. 53, 89-101.
Meyer, S.E., Debaene-Gill, S.B., Allen, P.S., 2000. Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides. Seed Science Research. 10, 213–223.
Michel, B.E., Kaufmann, M.R., 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51, 914-916.
Patade V. Y., Maya, K., Zakwan A. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science, 4(3), 125 -136.
Schellenberg, M.P. Biligetu, B. Wei, Y. Predicting seed germination of slender wheatgrass [Elymus trachycaulus (Link) Gould subsp. trachycaulus] using thermal and hydro time models. Canadian Journal of Plant Science. 93, 793-798.
Schutte, B.J., Regnier, E.E., Harrison, S.K., Schmoll, J.T., Spokas, K., Forcella. F., 2008. A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Science. 56, 555–560.
Watt, M.S., Xu, V., Bloomberg, M., 2010. Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecology Model. 221, 1267-1272.
Windauer, L., Altuna, A., Benech-Arnold, R., 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops Products. 25, 70-74.
Windauer, L., Nieto, C., Benech-Arnold, R.L., 2004. An´ alisis de hidrotiempo en semillas de Lesquerella fendleri sometidas a diferentes tratamientos de “priming”. In: Golberg, A.D., Taleisnik, E. (Eds.), Actas XXV Reuni´ on Argentina de Fisiolog´ıa Vegetal