Afyuni, M., Mojtabapur, R., Noorbakhsh, F., 2002. Salt Affected Soils & Reclamation. Arkan Isfahan Publication. 216 p. [In Persian].
Abarimoghaddam, H., Galavi, M., Ghanbari, A., Panjehkeh, N., 2011. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal Science 9 (1), 43–50.
Al-Karaki, G.N., 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10, 51- 54.
Asch, F., Dingkuhn, M., Dörffling, K., Miezan, K., 2000. Leaf K/Na ratio predicts salinity induced yield loss inirrigated rice. Euphytica. 113, 109-118.
Ashraf, M., 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199, 361–376.
Blanco, F.F., Folegatti, M.V., Gheyi, H.R., Fernandes, P.D., 2007. Emergenceand Growth of Corn and Soybean under Saline Stress. Scientia Agricola(Piracicaba, Braz.). 64(5), 451-459.
Cruz, V., Cuartero, J., Bolarin, M., Rommero, M., 1990. Evaluation of characters for ascertaining salt stress responses inLycopersicon species. Journal of the American Society for Horticultural Science. 115, 1000-1003.
Giri, B., Mukerji, K.G., 2004. Mycorrhizal inoculate alleviates salt stress in Sesbania aegyptica and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14, 307-312.
Giri, B., Kapoor, R., Mukerji, K.G., 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microbial Ecology. 54, 753-760.
Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Annual review of plant physiology and plant molecular biology. 51,463–499.
Hussein, M.M., Balbaa, L.K., Gaballah, M.S., 2007. Salicylic Acid and Salinity Effects on Growth of Maize Plants. Research Journal of Agriculture and Biological Sciences. 3(4), 321-328.
Jindal A., Atwal Sekhon, B.S., Singh, R., 1993. Effect of Vesicular-arbuscular mycorrhizae on metabolism of moong plant under NaCl salinity. Plant Physiology and Biochemistry. 31, 475-481.
Khodabandeh, N., 2003. Cereals. Tehran University Publication. 538p. [In Persian].
Kormanik, P.P.; McGraw, A.C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: SCHENCK, N.C. (Ed.). Methods and principles of mycorrhizal research. St. Paul: American Phytopathological Society. p.37-45.
Kumar, M., 2013. Crop Plants and Abiotic StressesJournal of Biomolecular Research & Therapeutics. 3:1.
Kumari, R., H. Kishan, Y. K. Bhoon & A. Varma, 2003. Colonization of cruciferous plants by Piriformospora indica. Current Science, 85, 1672-1674.
Maas, E.V., 1986. Salt tolerance of plants. Applied Agricultural Research.1, 12-25.
Mansour, M.M.F., Salama, K.H.A., Ali, F.Z.M., Abou Hadid, A.F., 2005. Cell and plant responses to NaCl in Zea Mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology. 31(1-2), 29-41.
Mayak, S., Tirosh, T., Glick, B.R., 2004. Plant growth-promoting bacteria confer resistance in tomato plantsto salt stress. Plant Physiology and Biochemistry. 42, 565–572.
Meneguzzo, S., Navarilzzo, I., 1999. Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. Journal of Plant Physiology. 155, 274-280.
Moller, I.M., 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual review of plant physiology and plant molecular biology 52, 561–591
Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment.25, 239-250.
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651-681.
Parida, A.K., A.B. Das, A.B., 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60, 324-349.
Pham, G.H., Kumari, R., Singh, A., Malla, R., Prasad, R., Sachdev, M.,Kaldorf, M., Buscot F., Oelmüller, R., Hampp, R., Saxena, A.K.,Rexer, K.H., Kost, G., Varma, A., 2004. Axenic Culture ofSymbiotic Fungus Piriformospora indica. In: Varma, A.,Abbot, L., Werner, D., Hampp, R. (Eds.). Plant SurfaceMicrobiology. Springer-Verlag Berlin, Heidelberg, pp593–612.
Rodriguez, R.J., White, J.F, Arnold, A.E., Redman, R.S., 2009. Fungal endophytes: Diversity and functional roles. New Phytologist. 182(2), 314-330.
Sepehri, N., Saleh Rastin, N., Hossieni Salkedeh, G., Khayam Nekouie, M., 2009. Effect of endophytic fungus, Piriformospora indica, on growth and resistance of Hordeum vulgare L. to salinity stress. Rangeland, 3 (3), 508-518. [In Persian with English Summary].
Shannon, M.C., Grieve, C.M.,1999. Tolerance of vegetable crops to salinity. Scientia Horticulturae. 78, 5-8.
Singh, A., J. Sharma, K. H. Rexer & A. Varma, 2000. Plant productivity determinants beyond Minerals, water and light. Piifrormospora indica: A revolutionary plant growth promoting fungus. Current Science. 79: 101-106.
Sumer, A., Zorb, C., Yan, F. & Schubert, S. Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. Journal of Applied Botany and Food Quality-Angewandte Botanik 78, 135-139 (2004).
Taleisnik, E., Grunberg, K., 1994. Ion balance in tomato cultivars differing in salt tolerance. I. Sodium and potassium accumulation and fluxes under moderate salinity. Physiology Planta. 92, 528-534.
Tuteja, N., 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology. 428,419-438.
Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 160, 1-40.
Varma, A., Singh, A., Sahay, N.S., Sharma. J., Kumari, M., Rana. D., Takeran, S., Deka, D., Baharti K., 2001. Piriformospora indica: An axenically cultivable mycorrhiza-like endo symbiotic fungus. Mycota IX. Spiringer Series, pp. 123-150.
Waller, F., Baltruschat, H., Achatz, B., Becker, K., Fischer, M., Fodor, J., Heier, T., Huckelhoven, R., Neumann, C., 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS, Proceedings of the National Academy of Sciences. 102, 13386–13391.
Zarea, M. J., Chordia, P., Varma, A., 2013. Piriformospora indica Versus Salt Stress. Soil Biology. 33, 263-281.
Zidan, I., Azaizeh, H., Neumann, P.M., 1990. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physioogy. 93, 7-11.
Zhu, J.K., 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology. 6, 441-445.