نوع مقاله : مقاله پژوهشی

نویسنده

استادیار پژوهش بخش اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

به‌منظور مطالعه تأثیر محدودیت رطوبتی بر صفات مؤثر در پتانسیل تولید ژنوتیپ‌های امیدبخش گندم نان زمستانه و بینابین، از طرح کرت‌های خردشده با طرح پایه بلوک‌های کامل تصادفی در سه تکرار به مدت دو سال زراعی در ایستگاه تحقیقاتی طرق مشهد استفاده شد. فاکتور محدودیت رطوبتی در سه سطح: شرایط بهینه رطوبتی، محدودیت رطوبتی از مرحله شیری دانه و از مرحله ظهور بساک تا انتهای رشد و نمو، در کرت‌های اصلی و تعداد 10 لاین امیدبخش گندم در کرت‌های فرعی موردمطالعه قرار گرفت. نتایج نشان داد محدودیت رطوبتی از مرحله شیری دانه و از مرحله ظهور بساک تا انتهای رشد و نمو باعث افت عملکرد دانه (به ترتیب 18/6 و 45/3 درصد) نسبت به شرایط بهینه شد. این کاهش به دلیل کاهش وزن هزار دانه و تا حدودی کاهش تعداد دانه در سنبلهبود. مقایسه ژنوتیپ‌های گندم ازنظر عملکرد دانه نشان داد که ژنوتیپ‌های میهن و C-84-4 بالاترین عملکرد دانه (به ترتیب 7593 و 7170 کیلوگرم در هکتار) را در متوسط شرایط محدودیت رطوبتی داشتند که به دلیلدارا بودن اجزای عملکرد بهینه در متوسط شرایط محدودیت رطوبتی شامل، تعداد سنبله در مترمربع (765 و 806 سنبله) وزن هزار دانه (38/33 و 37/87 گرم) تعداد دانه در سنبله (36/22 و 36/02 دانه در سنبله) و وزن دانه در سنبله (1/23 و 1/17 گرم)، به ترتیب در مقایسه با سایر ژنوتیپ‌ها بود. نتایج نشان داد که بیشترین شاخص برداشت در شرایط بهینه رطوبتی (40/95%) و کمترین آنبه محدودیت رطوبتی پس از ظهور بساک تعلق داشت (36/37%)، که می‌تواند به دلیل کاهش آب مصرفی پس از مرحله ظهور بساک در تیمارهای تنش باشد. به‌طورکلی با توجه به برتری ژنوتیپ‌های میهن و C-84-4 در هر دو شرایط بهینه و تنش این ژنوتیپ‌ها را می­توان برای شرایط مشابه این بررسی توصیه نمود.

کلیدواژه‌ها

Araus, J.L., Slafer, G.A., Royo, C.,Serret, M.D., 2008. Breeding for yield potential and stress.Adaptation in cereals. Critical Reviews in Plant Sciences. 27, 377–412.
Blum, A., 2005. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research. 56, 1159–1168.
Carmer, S.G., Nyqist,W.E., Walker,W.M., 1989. Least significant differences for combined analysis of experiments with two or three factor treatment design. Agronomy Journal, 81, 665-672.
Kringwi, F.M., Van Ginkel, M., Terthowan, R., Sears, R.G., Rajaram, S., Paulsen, G.M., 2004. Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica. 135, 361-371.
Lopes, M.S., Reynolds, M.P., 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology. 37, 147–156.
Morran, S., Eini, O.,Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., Eliby, S., Shirley, N, Langridge, P., Lopato, S., 2011. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal. 9, 230–249.
Nasseri, A., Fallahi, H.A., 2007. Water use efficiency of winter wheat under deficit irrigation. Journal of Biological Sciences. 7(1), 19-26.
Parish, RW., Phan, H.A., Iacuone, S., Li, S.F., 2012. Tapetal development and abiotic stress: a centre of vulnerability. Functional Plant Biology. 39, 553–559.
Passioura, J.B., 2012. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Functional Plant Biology. 39, 851–859.
Passioura, J.B., Angus, J.F., 2010. Improving productivity of crops in waterlimited environments. Advances in Agronomy. 106, 37–75.
Plaut, Z., Butow, B.J., Blumenthal, C.S., Wrigley, C.W., 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research. 86, 185–198.
Reynolds, M., Tuberosa, R., 2008.Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology. 11, 171–179.
Richards, R.A., Rebetzke, G.J., Watt, M., Condon, A.G., Spielmeyer, W., Dolferus, R., 2010.Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology. 37, 85–97.
Shahryari, R., Gurbanov, E., Gadimov, A., Hassanpanah, D., 2008. Tolerance of 42 bread wheat genotypes to drought stress after anthesis. Pakistan Journal of Biological Sciences. 11(10), 1330-1335.
Sinclair, T.R.,2011. Challenges in breeding for yield increase for drought. Trends in Plant Science. 16, 289–293.
Slafer, G.A., Whitechurch, E.M., 2001. Manipulating wheat development to improve adaptation. In: Reynolds, M.P., Ortiz-Monasterio, J.I., Mc. Nab, A., (Eds.), Application of Physiology in Wheat Breeding. Mexico, D.F.: CIMMYT, pp. 160-170.
Tardieu, F., 2012. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of Experimental Botany. 63, 25–31.
White, J.W., Andrade-Sanchez, P., Gore MA, Bronson KF, Coffelt TA, Conley, M.M., Feldmann, K.A., French, A.N., Heun, J.T., Hunsaker, D.J., Jenks, M.A., Kimball, B.A., Roth, R.L., Strand, R.J., Thorp, K.R., Wall, G.W., Wang, G., 2012. Field-based phenomics for plant genetics research. Field Crops Research.133, 101–112.