نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

2 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

3 استادیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

4 دانشیار، گروه تولیدات گیاهی، دانشکده کشاورزی بردسیر، دانشگاه شهید باهنر کرمان

5 استادیار، گروه تولیدات گیاهی، دانشکده کشاورزی بردسیر، دانشگاه شهید باهنر کرمان

چکیده

تنش کادمیم به عنوان یکی از مضرترین تنش‌های غیرزیستی با تأثیر شدید بر خصوصیات رشدی و فیزیولوژیک گیاهان منجر به کاهش عملکرد آن‌ها می‌شود. این مطالعه به منظور بررسی تأثیر سطوح مختلف کادمیم (1.25، 2.5، 5، 10، 20، 40، 80، 120، 160، 200 میلی‌گرم کادمیم بر کیلوگرم خاک) بر برخی خصوصیات بیوشیمیایی و رشدی گاوزبان اروپایی (Borago officinalis L.) در قالب طرح کاملا تصادفی با 3 تکرار در گلخانه تحقیقاتی دانشگاه شهید باهنر کرمان در سال1400 اجرا شد. تیمارهای مورد بررسی بطور معنی‌داری (p ≤0.01) صفات بیوشیمیایی، فیزیولوژیک و عملکرد گاوزبان اروپایی را تحت تأثیر قرار دادند. افزایش غلظت کادمیم اثر بازدارنده‌ای بر پارامتر‌های رشدی گیاه داشت، این تأثیر در آلودگی بالای 80 میلی‌گرم بر کیلوگرم کاملاً مشهود بود. تعداد گل، تعداد برگ، وزن گل، وزن ریشه، وزن اندام هوایی، طول ریشه و ارتفاع اندام هوایی به طور معنی‌داری با افزایش غلظت کادمیم کاهش یافتند. در سطح آلودگی 120 میلی‌گرم بر کیلوگرم، گلدهی و وزن ریشه گیاه به‌ ترتیب 71 و 69.9 درصد کاهش داشت. وزن اندام هوایی در سطح آلودگی 160 میلی‌گرم بر کیلوگرم به میزان 59.7 درصد کاهش یافت. فعالیت آنزیم آسکوربات‌پراکسیداز تا تیمار20 میلی‌گرم بر کیلوگرم افزایش یافت و بعد از آن با افزایش غلظت کادمیم فعالیت این آنزیم کاهش یافت. غلظت پرولین با افزایش آلودگی کادمیم افزایش یافت. رنگیزه‌های فتوسنتزی نیز در غلظت‌های بالای کادمیم کاهش یافتند. با توجه به اینکه عملکرد گاوزبان اروپایی تا غلظت 1.25 میلی‌گرم بر کیلو-گرم تحت تأثیر کادمیم قرار نگرفت، این گیاه امکان رشد به عنوان گیاه زینتی در مناطقی با آلودگی کمتر از1.25 میلی‌گرم بر کیلوگرم کادمیم را دارد.

کلیدواژه‌ها

موضوعات

Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M., Irshad, M.K., 2016. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L) under Cd stress. Archives of Agronomy and Soil Science 62, 533-546. [In Persian with English summary]. https://doi.org/10.1080/03650340.2015.1064903
Asada, k., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology. 141, 391-396. https://doi.org/10.1104/pp.106.082040
Bates, L.S., Waldren, R.P. Teare, I.D. 1973, Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205–207. https://doi.org/10.1007/BF00018060
Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254. https://doi.org/10.1006/abio.1976.9999
Dezhban, A., Shirvany, A., Attarod, M., Delshad, M., 2015. Response of chlorophyll fluorescence and growth of Celtis caucasica and Robinia pseudoacacia seedlings to the cadmium stress. Forest Sustainable Development. 4, 351-363. [In Persian with English summary].
Esfandyari, A., Mahbob, S., Shekari, f., 2009. Principles of Plant Physiology. Umid Tabriz Publication. 204p. [In Persian with English summary].
Evesh, T., Sweta, B., Pooja, P., Archana, N., 2019. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press. pp. 165-170. https://doi.org/10.1016/B978-0-12-812491-8.00023-0
Fernandes, J.A., Pereira, J.A., Saraiva, E., Ramalhosa, S., 2019. Casal, phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Research International. 123, 771-778. https://doi/org/10.1016/j.foodres.2019.05.014
Fotohi, R., Fatuhi Qazvini, R., Heydari, R., Hashempoor, A., 2011. Physiology and Molecular Biology of Stress Tolerance in Plants. University of Mashhad Publication. 550p. [In Persian with English summary].
Ghorbani, H., Heidari,M., 2016. Effect of salinity leveLs and lead and cadmium heavy metals on growth, photosynthetic pigments and potassium contect spinach. Journal of Soil and Plant Intractions. 35, 15-24. [In Persian with English summary]. https://doi.org/ 10.18869/acadpub.ejgcst.7.1.15
Khan, A., Singh, R., Nazar, P., Long, M., 2007. The Source-Sink relationship in mustard. Asian and Australasian Journal of Plant Science and Biotechnology. 1, 10-18.
Kok, E., Slek, I., ustum, A., 2010. Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (capsicum annum L.), varieties. Gazi University Journal of Science. 23, 1-6.
Liamas, A., Ullrich, C., Sanz, A., 2000. Cadmium effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and Soil. 219, 21-28. https://doi.org/10.1023/A:1004753521646
Li. H., Ru. W., Xianglin, Li., Bo, X., Tuanhui, X., Yunyun, L., Mingkuang, W., Yanhui, C., 2018. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. Environmental Science and Pollution Research. 25, 21671–21681.
Lichtenthaler, H.K., 1987.  Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology. 148, 350-382, https://doi.org/10.1016/0076-6879(87)48036-1
Loi, N., Gubareva, S., Stepanchikova, S., Sanzharova, I., 2012. Effect of cadmium pollution of sod_podzolic soil on growth and development of broad beans. Russian Agricultural Sciences. 38, 374–376. https://doi.org/10.3103/S1068367412050114
Marjani, V., Golchin, A., abdollahi, S., 2020. Potential of marigold (Calendula officinalis), ornamental cabbage (Brassica oleracea) and amaranthus (Amaranthus retroflexus) for phytoextraction of cadmium from the soil. Journal of Soil Management and Sustainable Production. 10, 95-113. [In Persian with English summary]. https://doi.org/10.22069/EJSMS.2021.17369.1924
Mipapazoglou, M. 2009. Foresight and research priorities for service oriented computing. 5–6 May 2009. in: Proceedings of the 11th International Conference on Enterprise Information Systems, Milan, Italy.
Mishra, S., Srivastava, S., Tripathi, D., Govindarajan, R., Kuriakose, V., Prasad, V., 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry. 44, 25-37. https://doi.org/10.1016/j.plaphy.2006.01.007
Mohamed, A., Castagna, A., Ranieri, A., di Toppi, S., 2012. Cadmium tolerance in brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry. 57, 15-22. https://doi.org/10.1016/j.plaphy.2012.05.002
Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M., 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters. 8, 199-216. https://doi.org/10.1007/s10311-010-0297-8
Omidbeigi, R., 2000. Approaches to Production and Processing of Medicinal Plants. Astan Ghods Razavi Publications, Mashhad. 286p. [In Persian].
Pourghasemian, N., Ehsanzadeh, P., 2013. Evaluation of antioxidative responses to cadmium contamination of soil and its relationship with some physiological traits in safflower genotypes. Journal of Plant Process and Function. 2, 15-31. [In Persian with English summary].
Schutzendubel, A., Polla, A., 2002. Plantresponsive to abiotic stresse: heavy metal-induced oxidative stress and protection by mycorrhization.j. Journal of Experimental Botany. 372, 1351-1365.
Shi, G., Liu, C., Cai, Q., Liu, Q., Hou, C., 2010. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bulletin of Environmental Contamination of Toxicolgy. 85, 256–263. https://doi.org/10.1007/s00128-010-0067-0
Tingting, Y., Shunyuan, J., Kai, H., Hui, S., Honglan, W., 2022. Cadmium (Cd) accumulation in traditional Chinese medicine materials (TCMMs): A critical review. Ecotoxicology and Environmental Safety. 242.113904. https://doi.org/10.1016/j.ecoenv
Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., Cakmk, I., 2006. Antioxidant defen.se system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology. 20, 181–189. https://doi.org/10.1016/j.jtemb.2005.12.004
Tiwari, S., Lata, C., 2018. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Frontiers in Plant Science. 9, 452.
Versha, P., Disha, M., Ranu, Y., Aman, S., Channayya, H., Birandra, K., Karuna, S., Anil, K., 2023. Phyto-exclusion of Pb and cd by different genotypes of andrographis paniculata (Burm. F.) nees: A novel approach for safe cultivation. Industrial Crops and Products. 191, Part A, 115977. https://doi.org/10.1016/j.indcrop
Veselov, D., Kuudoyarova, G., Syymonyan, M., Veselov, S. T., 2003. Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seadlings. Plant Physiology. 117, 353-359.
Xiaoli, P.W., Mengying, G., Jian, X., 2021. Trace heavy metals and harmful elements in roots and rhizomes of herbs: screening level analysis and health risk assessment. Chinese Herbal Medicines. 14, 622-626. https://doi.org/10.1016/j.chmed.2021.11.004
Xie, M., Chen, W., Dai, H., Wang, X., Yang, L., Kang, Y., Sun, H., Wang, L., 2021. Cadmium-induced hormesis effect in medicinal herbs improves the efficiency of safe utilization for low cadmium-contaminated farmland soil. Ecotoxicology and Environmental Safety. 225, 0147-6513. https://doi.org/10.1016/j.ecoenv.2021.112724
Zhang, F.Q., Zhang, H., Wang, L.X., Zhenguo,S., 2009. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of phaseolus aureus and vicia sativa and the roles of different antioxidant enzymes. Journal of Hazardous Materials. 168, 76-84.