نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 استاد گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

3 دانشیار گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

چکیده

گندم دوروم دومین گونه زراعی مهم گندم است که زراعت آن بخصوص در مرحله جوانه‌زنی تحت تأثیر شوری خاک یا آب قرار می‌گیرد. این مطالعه با هدف شناسایی ژنوتیپ‌های متحمل گندم دوروم نسبت به تنش شوری در مرحله جوانه‌زنی و رشد گیاهچه با استفاده از شاخص‌های انتخاب چندمتغیره مانند شاخص انتخاب ژنوتیپ ایده‌آل (IGSI) و شاخص فاصله چند متغیره از ژنوتیپ ایده‌آل (MGIDI) انجام گرفت. در این مطالعه تعداد 50 لاین و ژنوتیپ مختلف گندم دوروم از نظر تحمل به شوری در مرحله جوانه‌زنی و رشد گیاهچه به صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار مورد ارزیابی قرار گرفتند. سطوح شوری شامل غلظت‌های صفر، 75، 150 و 300 میلی‌مولار کلرید سدیم بود. نتایج تجزیه واریانس نشان داد که بین سطوح شوری و نیز بین ژنوتیپ‌ها از لحاظ تمامی صفات اختلاف معنی‌داری (p < 0.01) وجود داشت، ولی برهمکنش شوری و ژنوتیپ در هیچ یک از صفات مورد مطالعه معنی‌دار نشد. مقایسه میانگین سطوح شوری نشان داد که با افزایش سطح شوری، مقادیر مؤلفه‌های جوانه‌زنی و نیز طول و وزن ریشه‌‌چه و ساقه‌چه کاهش داشت. محاسبه شاخص MGIDI نشان داد که در تنش شوری 150 میلی‌مولار، با احتساب شدت گزینش 30 درصد، ژنوتیپ‌‌های با کد G9، G2، G29، G5، G12، G47، G30، G1، G31، G10، G34، G41، G13، G49 و G16 با داشتن کمترین مقادیر MGIDI و فاصله کمتر از ژنوتیپ ایده‌آل، ژنوتیپ‌های مطلوبی از لحاظ شاخصه‌های جوانه‌زنی و رشد گیاهچه بودند. بر اساس شاخص IGSI نیز در این سطح شوری ژنوتیپ‌های با کد G5، G29، G2، G30، G23، G9، G12، G1، G10، G41،G47 ، G34، G48، G16 و G13 به ترتیب با داشتن بیشترین مقادیر IGSI (بین 0.6 تا 0.8) و فاصله از ژنوتیپ ضعیف بیشتر ژنوتیپ‌های برتر محسوب شدند. استفاده از این شاخص‌ها در برنامه‌های اصلاحی برای گزینش ژنوتیپ‌های مطلوب می‌تواند مفید باشد.

کلیدواژه‌ها

موضوعات

Abdollahi Hesar, A., Sofalian, O., Alizadeh, B., Asghari, A., Zali, H., 2021. Investigation of frost stress tolerance in some promising rapeseed genotypes. Journal of Agricultural Science and Sustainable Production. 31, 270-288. [In Persian with English summary].
Almansouri, M., Kinet, J. M., Lutts, S., 2001. Effect of salt and osmotic stress on germination in durum wheat (Triticum durum Desf.). Plant and Soil. 231, 243- 254. https://doi.org/10.1023/A:1010378409663
Amiri, R., Pezeshkpour, P., Karami, I., 2021. Identification of lentil desirable genotypes using multivariate statistical methods and selection index of ideal genotype under rainfed conditions. Journal of Crop Breeding. 13, 140-151. [In Persian with English summary].
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry. 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
Aysen, Y., Uncuoglu, A.A., 2012. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress. Journal of Stress Physiology and Biochemistry. 8, 143-156.
Bewley, J.D., Black, M., 1994. Seeds: Physiology of Development and Germination. Plenum Press, New York. 445pp
Borrelli, G. M., Fragasso, M., Nigro, F., Platani, C., Papa, R., Beleggia, R., Trono, D., 2018. Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. Plant Physiology and Biochemistry, 133, 57-70. https://doi.10.1016/ j.plaphy.2018.10.025
Carrillo, J.M., Martinez, M.C., Brites, C., Nieto-Taladriz, M.T., Vázquez, J.F., 2000. Relationship between endosperm proteins and quality in durum wheat (Triticum turgidum L. var. durum). Options Mediterraneennes. 40, 463-467.
Dantas, B.F., Ribeiro, L.D. S., Aragão, C.A., 2007. Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Revista Brasileira de Sementes. 29, 106-110. https://doi.org/10.1590/S0101-31222007000200014
Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., Munns, R., 2005. Control of sodium transport in durum wheat. Plant physiology. 137, 807-818. https://doi.org/10.1104/pp.104.057307
EL Sabagh, A., Islam, M. S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., ... Arshad, A. 2021. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Frontiers in Agronomy. 3, 661932. https://doi.org/10.3389/fagro.2021.661932
El-Hendawy, S.E., Al-Suhaibani, N., Hassan, W.M., Dewir, Y.H., Elsayed, S., Al-Ashkar, I., ... Schmidhalter, U., 2019. Evaluation of wavelengths and spectral reflectance indices for high-throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agricultural Water Management. 212, 358-377. https://doi.org/10.1016/j.agwat.2018.09.009
Ghassemi-Golezani, K., Dalil, B., 2011. Seed ageing and field performance of maize under water stress. African Journal of Biotechnology. 10, 18377-18380. https://doi.org/10.5897/AJB11.2154
Hadi, M.R., Khosh Kholgh Sima, N.A., Khavarinejad, R., KiyamNekoie, S.M., 2008. The effect of elements accumulation on salinity tolerance in seven genotype durum wheat (Triticum turgidum L.) collected from the Middle East. Iranian Journal of Biology. 21, 326-340. [In Persian with English Summary].
Hasanuzzaman, M., Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K., Fujita, M., 2014. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International. 2014. https://doi.org/10.1155/2014/757219
Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology. 51, 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
International Grains Council, 2021. IGC, International Grains Council. Available online: https://www.igc.int/en/default.aspx (accessed on 15 January 2023).
James, R.A., von Caemmerer, S., Condon, A.T., Zwart, A. B., Munns, R., 2008. Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Functional Plant Biology. 35, 111-123. https://doi.org/10.1071/FP07234
Jamil, A., Riaz, S., Ashraf, M., Foolad, M.R., 2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences. 30, 435-458. https://doi.org/10.1080/07352689.2011.605739
Kumari, A., Kaur, R., 2020. A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant Growth Regulation. 91, 327-347. https://doi.org/10.1007/s10725-020-00625-0
Liang, W., Ma, X., Wan, P., Liu, L., 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications. 495, 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Munns, R., James, R.A., 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil. 253, 201-218. https://doi.org/10.1023/A:1024553303144
Munns, R., James, R.A., Läuchli, A., 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of experimental botany. 57, 1025-1043. https://doi.org/10.1093/jxb/erj100
Murillo‐Amador, B., López‐Aguilar, R., Kaya, C., Larrinaga‐Mayoral, J., Flores‐Hernández, A., 2002. Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science. 188, 235-247. https://doi.org/10.1046/j.1439-037X.2002.00563.x
Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., Zali, H., 2018. Evaluation of durum wheat cultivars and promising lines for yield and yield stability in warm and dry areas using AMMI model and GGE biplot. Journal of Crop Breeding. 10, 1-12. [In Persian with English summary]
Olivoto, T., Nardino, Am., 2020. MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics. 10, 981-1093. https://doi.org/10.1093/bioinformatics/btaa981
Olivoto, T., Diel, M.I., Schmidt D., Lúcio, A.D.C., 2021. Multivariate analysis of strawberry experiments: where are we now and where can we go? BioRxiv. https://doi.org/10.1101/2020.12.30.424876
Pour-Aboughadareh, A., Sanjani, S., Nikkhah-Chamanabad, H., 2021. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre. 45, 117 -128. https://doi.org/10.1186/s42269-021-00576-0
Promila, K., Kumar, S., 2000. Vigna radiata seed germination under salinity. Biologia Plantarum. 43, 423-426. https://doi.org/10.1023/A:1026719100256
Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., Piernik, A., 2020. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor L. Moench) genotypes. Agronomy. 10, 859. https://doi.org/10.3390/agronomy10060859
Ramzi, E., Asghari, A., Khomari, S., Mohammaddoust Chamanabad H.R., 2018. Investigation of durum wheat (Triticum turgidum L. subsp. durum Desf) lines for tolerance to aluminum stress condition. Journal of Crop Breeding. 10, 63-72. [In Persian with English summary].
Ryu, H., Cho, Y.G., 2015. Plant hormones in salt stress tolerance. Journal of Plant Biology. 58, 147-155. https://doi.org/10.1007/s12374-015-0103-z
Sayar, R., Bchini, H., Mosbahi, M., Khemira, H. 2010. Response of durum wheat (Triticum durum Desf.) growth to salt and drought stresses. Czech Journal of Genetics and Plant Breeding. 46, 54–63. https://doi.org/10.17221/85/2009-CJGPB
Solat Petloo, N., Asghari Zakaria, R., Ebadi, A., Sharifi Ziveh, P., 2022. Selection of cow cockle (Vaccaria hispanica) ecotypes based on agronomic traits under different irrigation regimes. Journal of Crop Breeding. 14, 135-144. [In Persian with English summary].
Solat Petloo, N., Asghari Zakaria, R., Ebadi, A., Sharifi Ziveh, P. 2023. Evaluation of yield and drought tolerance indices of cow cockle (Vaccaria hispanica Mill. Rauschert) ecotypes. Environmental Stresses in Crop Sciences. 16, 517-530. [In Persian with English summary]. https://doi.org/10.22077/escs.2023.4779.2069
Subira, J., Peña, R. J., Álvaro, F., Ammar, K., Ramdani, A., Royo, C., 2014. Breeding progress in the pasta-making quality of durum wheat cultivars released in Italy and Spain during the 20th Century. Crop Pasture Science. 65, 16–26. https://doi.org/10.1071/CP13238
Xynias, I.N., Mylonas, I., Korpetis, E.G., Ninou, E., Tsaballa, A., Avdikos, I.D., Mavromatis, A.G., 2020. Durum wheat breeding in the Mediterranean region: Current status and future prospects. Agronomy. 10, 432. https://doi.org/10.3390/agronomy10030432
Yaghotipoor, A., Farshadfar, E. A., Saeidi, M. (2017). Evaluation of drought tolerance in bread wheat genotypes using new mixed method. Environmental Stresses in Crop Sciences, 10(2), 247-256. [In Persian with English summary]. https://doi.org/10.22077/escs.2017.581
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., Enayati Shariatpanahi, M., 2019. Identifying drought tolerant canola genotypes using selection index of ideal genotype. Journal of Crop Breeding. 11, 117-126. [In Persian with English summary].
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., Hoseini, S.M., 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum-An International Journal. 7, 425-436.