نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد تمام فیزیولوژی گیاهی، عضو پژوهشکده بیوتکنولوژی و گروه علوم گیاهی، دانشکده علوم، دانشگاه شهرکرد

2 دانش آموخته کارشناسی ارشد فیزیولوژی گیاهی، گروه علوم گیاهی، دانشکده علوم، دانشگاه شهرکرد

3 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

گیاه‌پالایی یک روش سازگار با محیط زیست برای حذف فلزات سنگین از محیط است و کاربرد کلات‌هایی مانند EDTA ممکن است به افزایش برداشت فلز از خاک بوسیله گیاهان کمک ‌کند. لذا در این مطالعه، اثر سطوح مختلف EDTA (0، 0.5، 1، 2 گرم بر کیلوگرم خاک) و غلظت‌های مختلف نیکل (0، 100، 150 میلی‌گرم بر کیلوگرم خاک) بر گیاهان همیشه‌بهار بررسی شد. نتایج نشان داد که تحت شرایط بدون تنش نیکل، کاربرد غلظت‌های 1 و 2 گرم EDTA بر کیلوگرم خاک، پارامترهای رشد و محتوای کلروفیل a و b را کاهش و محتوای مالون‌دی‌آلدئید در ریشه را افزایش داد که ناشی از اثر سمیت EDTA بود. در سطوح 100 و 150 میلی‌گرم بر کیلوگرم نیکل، افزودن 0.5 گرم EDTA در هر کیلوگرم خاک، اثر معنی‌داری بر فاکتور تجمع زیستی نیکل در بخش هوایی و ریشه گیاه نداشت اما غلظت نیکل در بخش هوایی (65 و 60.35 درصد) و ریشه (35 و 29.44 درصد)، فاکتور انتقال نیکل (22.5 و 25.20 درصد) و میزان برداشت کل نیکل در هر گلدان (27.66 و 23.44 درصد) را افزایش داد. در مقابل با کاربرد غلظت‌های بالاتر EDTA، محتوای نیکل قابل جذب خاک و در نتیجه جذب نیکل در گیاه به‌طور معنی‌داری کاهش یافت. به‌طوری‌که در سطوح 100 و 150 میلی‌گرم بر کیلوگرم نیکل، با کاربرد غلظت‌ 2 گرم EDTA بر کیلوگرم خاک، غلظت نیکل در بخش هوایی و ریشه گیاه تفاوت معنی‌داری با شاهد این گروه‌ها نداشت و با توجه به این‌که زیست‌توده کل هم در این غلظت EDTA تقریبا نصف شد، میزان برداشت کل نیکل در هرگلدان در این تیمارها به ترتیب 2.63 و 2.72 برابر کاهش یافت. بنابراین غلظت 0.5 گرم EDTA در هر کیلوگرم خاک ظرفیت گیاه‌پالایی گیاه را بطور معنی‌داری افزایش داد اما کاربرد غلظت‌های بالاتر، برای بهبود توان حذف نیکل از خاک توسط گیاه همیشه‌بهار مفید نبود.

کلیدواژه‌ها

موضوعات

 
 Ali, S.Y., Chaudhury, S., 2016. EDTA- enhanced phytoremediation by Tagetes spp. and effect on bioconcentration and translocation of heavy metals. Environmental Processes. 3, 735-746. https://doi.org/10.1007/s40710-016-0180-0
Ali, H., Khan, E., Sajad, M.A., 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere. 91, 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075
Amooaghaie, R., Zangene-madar, F., Enteshari, Sh., 2017. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicology and Environmental Safety. 139, 210-218. https://doi.org/10.1016/j.ecoenv.2017.01.037
 Bareen, F., Rafiq, K., Shafiq, M., Nazir, A., 2019. Uptake and leaching of Cu, Cd, and Cr after EDTA application in sand columns using sorghum and pearl millet. Polish Journal of Environmental Study. 28, 2065–2077 https://doi.org/10.15244/pjoes/84834
Bian, X., Cui, J., Tang, B., Yang, L. 2018 Chelant-induced phytoextraction of heavy metals from contaminated soils: A review. Polish Journal of Environmental Study. 27, 2417–2424. https://doi.org/10.15244/pjoes/81207
Chen, H., Cutrright, T., 2001. EDTA and HEDTA effects on Cd2+, Cr2+ and Ni2+ uptake by Helianthus annus. Chemosphere. 45, 21-28. https://doi.org/10.1016/s0045-6535(01)00031-5
Ebrahimi, M., Shahsavand, F., 2014. EDTA Enhanced phytoextraction capacity of Scirpus maritimus L. grown on Pb-Cr contaminated soil and associated potential leaching risks. International Journal of Scientific Research in Environmental Sciences. 2, 379-388. https://doi.org/10.1016/S0045-6535(01)00031-5
Eissa, M. A., Ghoneim. M. F., El- Gharably, G. A., El-Razek, M., 2014. Phytoextraction of nickel, lead and cadmium from metals contaminated soils using different field crops and EDTA. World Applied Sciences Journal. 32, 1045-1052 https://doi.org/10.5829/idosi.wasj.2014.32.06.912
Gee, G.W., Bauder J.W., 1986. Partical size analysis. In: A. Klute (ed.), Methods of Soil Analysis. Part 1. ASA and SSSA, Madison, WI. p. 383-411.
Hart, G., Koether, M., McElroy, T, Greipsson, S., 2022. Evaluation of chelating agents used in phytoextraction by switchgrass of lead contaminated soil. Plants. 11, 1012. https://doi.org/10.3390/plants11081012
Hassan, M.U., Chattha, M.U., Khan, I. Chattha, M.B., Aamer, M., Nawaz, M., Ali, A. Khan, M. A. U., Khan, T. A., 2019. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environmental Science and Pollution Research. 26, 12673–12688.  https://doi.org/10.1007/s11356-019-04892-x
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid and peroxidation. Archive of Biochemistry and Biophysics. 125, 189–198.  https://doi.org/10.1016/0003-9861(68)90654-1
Heidari, J., Amooaghaie, R., Kiani, S., 2020. Impact of chitosan on nickel bioavailability in soil, the accumulation and tolerance of nickel in Calendula tripterocarpa. International Journal of Phytoremediation 22, 1175–1184 https://doi.org/10.1080/15226514.2020.1748564
Hernández-Allica, J., Garbisu, C., Barrutia, O., Becerril, J. M., 2007. EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environmental and Experimental Botany. 60, 26–32. https://doi.org/10.1016/j.envexpbot.2006.06.006
Jean, L., Bordas, F., Gautier-Moussard, C., Verhay, P. Hitmi, A., Bollinger, J. C., 2008. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Dature innoxia. Environmental Pollution. 15, 555-563.  https://doi.org/10.1016/j.envpol.2007.09.013
Krujatz, F., 2012. Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium Pseudomonas brassicacearum. Water, Air and Soil Pollution. 223, 1281–1293. https://doi.org/10.1007/s11270-011-0944-0
Knudsen, D., Peterson, G.A., Partt, P.F., 1982. Lithium, sodium, and potassium. In: A.L. Page A.L. PageP.A. HelmkeR.H. LoeppertP. N. SoltanpourM. A. TabatabaiC. T. JohnstonM. E. Sumner (eds.) Methods of Soil Analysis. Part 2. ASA and SSSA, Madison, WI. p. 225–246.  https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Kaur, L., Sharma, S., Gadgil, K., 2019. Response of Indian mustard (Brassica juncea arawali) plants under nickel stress with special reference to nickel phytoextraction potential. EQA - International Journal of Environmental Quality. 34, 17–33.  https://doi.org/10.6092/issn.2281-4485/8528
Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Lindsay, W.L., Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42, 421–428.  https://doi.org/10.2136/sssaj1978.03615995004200030009x
Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R., Zhang, Z., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety. 126, 111–121.  https://doi.org/10.1016/j.ecoenv.2015.12.023
Mohammadpour, G.H., Karbassi, A., Baghvand, A., 2016. Pollution intensity of nickel in agricultural soil of Hamedan region. Caspian Journal of Environment Science 14, 15.24
Mulvaney, R.L., 1996. Nitrogen–inorganic forms. In: D.L. Sparks, A.L. PageP.A. HelmkeR.H. LoeppertP. N. SoltanpourM. A. TabatabaiC. T. JohnstonM. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 1123–1184. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Nabaei, M., Amooaghaie, R., 2020. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus L. G. Don. Environmental Science and Pollution Research. 27, 6981–6994.  https://doi.org/10.1007/s11356-019-07283-4
Nazmul Huda, A. K. M., Hossain, M., Mukta, R.H., Khatun, M. R., Haque, Md. A., 2021. EDTA-enhanced Cr detoxification and its potential toxicity in rice (Oryza sativa L.). Plant Stress. 2, 100014  https://doi.org/10.1016/ j.stress.2021.100014
Nelson, D.W., Sommers L.E., 1996. Total carbon, organic carbon, and organic matter. In: D.L. Sparks A.L. PageP.A. HelmkeR.H. LoeppertP. N. SoltanpourM. A. TabatabaiC. T. JohnstonM. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 961–1010. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In: A.L. Page A.L. PageP.A. HelmkeR.H. LoeppertP. N. SoltanpourM. A. TabatabaiC. T. JohnstonM. E. Sumner (eds.) Methods of Soil Analysis. Part 2. ASA and SSSA, Madison, WI. p. 403–430. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Panwar, B. S., Ahmed, K. S., Miltal, S. B., 2002. Phytoremediation of nickel- contaminated soils by Brassica species. Environment, Development and Sustainability. 4, 1-6. https://doi.org/10.1023/A:1016337132370
Rhodes, J.D., 1996. Salinity: electrical conductivity and total dissolved solids. In: D.L. Sparks A.L. PageP.A. HelmkeR.H. LoeppertP. N. SoltanpourM. A. TabatabaiC. T. JohnstonM. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 417-435. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Saffari, V.R., Saffari, M., 2020. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil, International Journal of Phytoremediation,  https://doi.org/10.1080/15226514.2020.1754758
Sekabira, K., Oryem-Origa, H., Basamba, T.A., Mutumba, G., Kakudidi, E., 2010. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. International Journal of Environmental Science and Technology. 7, 435–446.  https://doi.org/10.1007/BF03326153
Shahid, M., Austruy, A., Echevarria, G., Arshad, M., Sanaullah, M., Aslam, M., Nadeem, M., Nasim, W. Dumat, C., 2014. EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination 23, 389–416. https://doi.org/10.1080/15320383.2014.831029
Tariq, S. R., Ashraf, A., 2016. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry. 9, 806-814. https://doi.org/10.1016/j.arabjc.2013.09.024
Tashakori zadeh, M., Alizadeh, M., 2019. Effect of ethylene diamine tetra acetic acids on morphological characteristics and phytoremediation capacity of Indian mustard (Brassica juncea L) in nickel contaminated soil. Human and Environment. 17, 15-24 [In Persian]. https://dorl.net/dor/20.1001.1.15625532.1398.17.3.2.4
Tipu, M.I., Ashraf, M.Y., Sarwar, N., Akhtar, M., Shaheen, M.R., Ali, S., Damalas, C.A., 2021. Growth and Physiology of Maize (Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. Journal of Plant Growth Regulation 40, 774-786. https://doi.org/10.1007/s00344-020-10132-1
Thomas, G.W., 1996. Soil pH and soil acidity. In: D.L. Sparks, A.L. PageP.A. HelmkeR.H. LoeppertP. N. SoltanpourM. A. TabatabaiC. T. JohnstonM. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 475-490. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
 Tohidi, Sh., Gholamalizadeh, A., Asgharipour, M., Naghavi, H., 2019. The effect of EDTA and ammonium molybdate on increasing bioavailability efficiency and decreasing lead tension by corn. Environmental Stresses in Crop Science. [In Persian].  https://doi.org/10.22077/escs.2019.1421.1310
Turaut, C., Katie, P., Cutright, T. J., 2004. The effect of EDTA and cytric acid on phytoremediation of cd, Cr and Ni from soil using Helianthus annuus. Environmental Pollution. 13, 147-154 https://doi.org/10.1016/j.envpol.2004.01.017
Valivand, M., Amooaghaie, R., 2021. Foliar spray with sodium hydrosulfide and calcium chloride advances dynamic of critical elements and efficiency of nitrogen metabolism in Cucurbita pepo L. under nickel stress. Scientia Horticulturea (Amsterdam) 283,110052  https://doi.org/10.1016/j.scienta.2021.110052
Vischetti, C., Marini, E., Casucci, C., De Bernardi, A., 2022. Nickel in the environment: Bioremediation techniques for soils with low or moderate contamination in European Union. Environments 9, 133. https://doi.org/10.3390/environments9100133
Zhang, X.,  Zhong, B.,  Shafi , M.,  Guo, J.,  Liu, C.,  Guo, H.,  Peng, D., Wang, Y.,  Liu, D., 2018. Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environmental Science and Pollution Research. 25, 18846-18852.  https://doi.org/10.1007/s11356-018-2040-0