Ali, Md.N., Ghosh, B., Gantait, S., Chakraborty, S., 2014. Selection of rice genotypes for salinity tolerance through morpho-biochemical assessment. Rice Science. 21 (5), 288–298.
https://doi.org/10.1016/s1672-6308(13)60189-4
Aydin, S., Büyük, İ., Aras, E.S., 2014. Expression of SOD gene and evaluating its role in stress tolerance in NaCl and PEG stressed Lycopersicum esculentum. Turkish Journal of Botany. 38, 89–98.
https://doi.org/10.3906/bot-1305-1.
Bai, L.-W.-D., Liu, J., Dai, L.-F., Deng, Q.-W., Chen, Y.-L., Xie, J.-K., Luo, X.-D., 2021. Identification and characterisation of cold stress-related proteins in
Oryza rufipogon at the seedling stage using label-free quantitative proteomic analysis. Functional Plant Biology. 48(5) p.542.
https://doi.org/10.1071/fp20046
Bose, J., Rodrigo-Moreno, A., Shabala, S., 2013. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany. 65 (5), 1241–1257.
https://doi.org/10.1093/jxb/ert430
Chen, T., Shabala, S., Niu, Y., Chen, Z.-H., Shabala, L., Meinke, H., Venkataraman, G., Pareek, A., Xu, J., Zhou, M., 2021. Molecular mechanisms of salinity tolerance in rice. The Crop Journal. 9(3), 506–520.
https://doi.org/10.1016/j.cj.2021.03.005
Estaji, A., Roosta, H.R., Rezaei, S.A., Hosseini, S.S., Niknam, F., 2018. Morphological, physiological and phytochemical response of different
Satureja hortensis L. accessions to salinity in a greenhouse experiment. Journal of Applied Research on Medicinal and Aromatic Plants. 10, 25–33.
https://doi.org/10.1016/j.jarmap.2018.04.005
Georis, J., Esteves, F.D.L., Lamotte-Brasseur, J., Bougnet, V., Giannotta, F., Frère, J.-M., Devreese, B., Granier, B., 2008. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: Structural basis and molecular study. Protein Science. 9 (3), 466–475.
https://doi.org/10.1110/ps.9.3.466Gill
Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12), 909–930.
https://doi.org/10.1016/j.plaphy.2010.08.016
Gill, S.S., Anjum, N.A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S.C., Tuteja, N., 2015. Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research. 22(14), 10375–10394.
https://doi.org/10.1007/s11356-015-4532-5
Guruprasad, K., Reddy, B.V.B., Pandit, M.W., 1990. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. “Protein Engineering, Design and Selection.” 4(2), 155–161.
https://doi.org/10.1093/protein/4.2.155
Ighodaro, O.M., Akinloye, O.A., 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 54(4), 287–293.
https://doi.org/10.1016/j.ajme.2017.09.001
Jithesh, M.N., Prashanth, S.R., Sivaprakash, K.R., Parida, A.K., 2006. Antioxidative response mechanisms in halophytes: Their role in stress defence. Journal of Genetics. 85(3), 237–254.
https://doi.org/10.1007/bf02935340
Kannan, N., Vishveshwara, S., 2000. Aromatic clusters: a determinant of thermal stability of thermophilic proteins. Protein Engineering, Design and Selection. 13(11), 753–761.
https://doi.org/10.1093/protein/13.11.753
Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., Bohnert, H.J., 2001. Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell. 13(4), 889–905.
https://doi.org/10.1105/tpc.13.4.889
Kokkonen, P., Bednar, D., Pinto, G., Prokop, Z., Damborsky, J., 2019. Engineering enzyme access tunnels. Biotechnology Advances. 37(6) p.107386.
https://doi.org/10.1016/j.biotechadv.2019.04.008
Lanzarotti, E., Biekofsky, R.R., Estrin, D.A., Marti, M.A., Turjanski, A.G., 2011. Aromatic–aromaticinteractions in proteins: Beyond the dimer. Journal of Chemical Information and Modeling. 51(7), 1623–1633.
https://doi.org/10.1021/ci200062e
M Marcum, K.B., Murdoch, C.L., 1994. Salinity Tolerance mechanisms of six C4 turfgrasses. Journal of the American Society for Horticultural Science. 119(4), 779–784.
https://doi.org/10.21273/jashs.119.4.779
Moodley, A., Fatoba, A., Okpeku, M., Emmanuel Chiliza, T., Blessing Cedric Simelane, M., Pooe, O.J., 2022. Reverse vaccinology approach to design a multi-epitope vaccine construct based on the Mycobacterium tuberculosis biomarker PE_PGRS17. Immunologic Research. 70(4), 501–517.
https://doi.org/10.1007/s12026-022-09284-x
Prashanth, S.R., Sadhasivam, V., Parida, A., 2007. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant
Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research. 17(2), 281–291.
https://doi.org/10.1007/s11248-007-9099-6
Qiao, K., Fang, C., Chen, B., Liu, Z., Pan, N., Peng, H., Hao, H., Xu, M., Wu, J., Liu, S., 2020. Molecular characterization, purification, and antioxidant activity of recombinant superoxide dismutase from the Pacific abalone
Haliotis discus hannai Ino. World Journal of Microbiology and Biotechnology. 36(8).
https://doi.org/10.1007/s11274-020-02892-5
Riyazuddin, R., Verma, R., Singh, K., Nisha, N., Keisham, M., Bhati, K.K., Kim, S.T., Gupta, R., 2020. Ethylene: A master regulator of salinity stress tolerance in plants. Biomolecules. 10(6) p.959.
https://doi.org/10.3390/biom10060959
Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., Mulet, J.M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in
Phaseolus vulgaris L. South African Journal of Botany. 105, 306–312.
https://doi.org/10.1016/j.sajb.2016.03.011
Win, K.T., Oo, A.Z., 2015. Genotypic difference in salinity tolerance during early vegetative growth of cowpea (
Vigna unguiculata L. Walp.) from Myanmar. Biocatalysis and Agricultural Biotechnology. 4(4), 449–455.
https://doi.org/10.1016/j.bcab.2015.08.009