نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان، سنندج

2 استادیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان، سنندج

3 دانشیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، سنندج

4 استادیار، گروه زراعت، دانشگاه تربیت مدرس، تهران

چکیده

تخریب منابع آب و خاک در سیستم‌های کشاورزی رایج، ضرورت استفاده از نهاده‌های طبیعی را به ویژه در شرایط کم آبی بیش از پیش آشکار می‌سازد. بیوچار با افزایش ظرفیت نگهداری آب در خاک، محققان را امیدوار نموده که می‌تواند علاوه بر بهبود رشد گیاه با تنش خشکی مقابله نماید. در همین راستا به‌منظور بررسی اثر رژیم‌های آبیاری و کاربرد بیوچار بر گیاه دارویی سیاهدانه (Nigella sativa L.)، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در گلخانه دانشکده کشاورزی دانشگاه کردستان در سال 1397 به‌اجرا درآمد. فاکتورهای آزمایش شامل آبیاری در سه سطح 100 (آبیاری کامل)، 70 (تنش ملایم خشکی) و 40 (تنش شدید خشکی) درصد ظرفیت زراعی و دو سطح مصرف بیوچار (0 و 15 تن در هکتار) بودند. نتـایج نشـان داد افـزایش شدت تنش خشکی (کاهش آبیاری) منجر به کاهش محتوای نسبی آب برگ، محتوای کلروفیل کل، کارایی فتوسیستم II، ارتفاع بوته، تعداد شاخه فرعی و گل‌دهنده، تعداد کپسول در بوته، تعداد دانه در بوته، عملکرد بیولوژیک و عملکرد دانه گردید. از سوی دیگر کاربرد بیوچار سبب تقلیل اثرات منفی تنش خشکی گردید، به‌طوری که با حفظ و نگهداشت میزان آب خاک، صفات مورفوفیزیولوژیک را بهبود بخشید. علاوه بر این بیوچار در سطوح آبیاری 40، 70 و 100 عملکرد دانه را به ترتیب 51.33، 12.34 و 72.10 درصد نسبت به شرایط عدم کاربرد بیوچار افزایش داد. بنابراین می‌توان گفت بیوچار در کاهش اثرات خشکی موثر می‌باشد.

کلیدواژه‌ها

 Abbaspour, F., Asghari, H.R., Rezvani Moghaddam, P., Abbasdokht, H., Shabahang, J., Baig Babaei, A., 2017. Effects of biochar application on yield and yield components of black seed (Nigella sativa L.) under low irrigation conditions. Iranian Journal of Medicinal and Aromatic Plants. 33, 837-852. [In Persian]. https://doi.org/10.22067/GSC.V17I1.63344
Abeer, H., Abd_Allah, E.F., Alqarawi, A.A., Egamberdieva, D., 2015. Induction of salt stress tolerance in cowpea (Vigna unguiculata L. Walp.) by arbuscular mycorrhizal fungi. Legume Research. 38, 579-88. https://doi.org/10.18805/lr.v38i5.5933
Abideen, Z., Koyro, H.W., Huchzermeyer, B., Ansari, R., Zulfiqar, F., Gul, B., 2020. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biology. 22, 259-266. https://doi.org/10.1111/plb.13054
Akhtar, S.S., Andersen, M.N., Liu, F., 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agriculture of Water Management. 138, 37-44. https://doi.org/10.1016/j.agwat.2014.02.016
Akhtar, S.S., Andersen, M.N., Liu, F., 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agriculture of Water Management. 158, 61-68. https://doi.org/10.1016/j.agwat.2015.04.010
Akhtar, S.S., Andersen, M.N., Liu, F., 2015. Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science. 201, 368–378. https://doi.org/10.1111/jac.12132
Alhaj, N.A., Shamsudin, M.N., Alipiah, N.M., Zamri, H.F., Bustamam, A., Ibrahim, S., Abdullah, R., 2010. Characterization of Nigella sativa L. Essential oil-loaded solid lipid nanoparticles. American Journal of Pharmacology and Toxicology. 5, 52-57. https://doi.org/10.3844/ajptsp.2010.52.57
Ali, S., Rizwan, M., Qayyum, M.F., Ok, Y.S., Ibrahim, M., 2017. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research. 24, 1270-1277. https://doi.org/10.1007/s11356-017-8904-x
Arnon, A.N., 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal. 23, 112-121.
Bannayan, M., Nadjafi, F., Azizi, M., Tabrizi, L., Rastgoo, M., 2008. Yield and seed quality of Plantago ovate and Nigella sativa under different irrigation treatments. Industrial Crops and Products. 27, 11-16. https://doi.org/10.1016/j.indcrop.2007.05.002
Barrow, C.J., 2012. Biochar: potential for countering land degradation and for improving agriculture. Applied Geography. 34, 21–28. https://doi.org/10.1016/j.apgeog.2011.09.008
Bodner, G., Nakhforoosh, A., Kaul, H.P., 2015. Management of crop water under drought: a review. Agronomy for Sustainable Development. 35, 401-442. https://doi.org/10.1007/s13593-015-0283-4
Ferlito, F., Torrisi, B., Allegra, M., Stagno, F., Caruso, P., Fascella, G. 2020. Evaluation of conifer wood biochar as growing media component for citrus nursery. Applied Sciences. 10, 1618. https://doi.org/10.3390/app10051618
Haj Seyed Hadi, M.R., Darzi, M.T., Riazi, G.H., 2016. Black cumin (Nigella sativa L.) yield affected by irrigation and plant growth promoting bacteria. Journal of Medicinal Plants and By-Products. 2, 125-133. https://doi.org/10.22092/JMPB.2016.109388
Hussain, H.A., Men, S., Hussain, S., 2019. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports. 9, 30-39. https://doi.org/10.1038/s41598-019-40362-7
Ibrahim, O.M., Bakry, A.B., El-Kramany, M.F., Elewa, T.A., 2015. Evaluating the role of biochar application under two levels of water requirements on wheat production under sandy soil conditions. Global Journal of Advanced Research. 2, 411-418.
Jeon, M.W., Ali, M.B., Hahn, E.J., Paek, K.Y., 2006. Photosynthetic pigments, morphology and leaf gas exchange during ex-vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environmental and Experimental Botany. 55, 183-194. https://doi.org/10.1016/J.ENVEXPBOT.2004.10.014
 
Jiang, Z., Lian, F., Wang, Z., Xing, B., 2020. The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany. 71, 520-542. . https://doi.org/10.1093/jxb/erz301
João, V.A.C., Joaquim, A.G.S., Fabrício, E.L.C., Juliana, R.C., Milton, C.L.N., 2019, The regulation of P700 is an important photoprotective mechanism to NaCl-salinity in Jatropha curcas. Physiologia Plantarum. 167, 404-417. https://doi.org/10.1111/ppl.12908
Kabiri, R., Nasibi, F., Farahbakhsh, H., 2014, Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protection Science. 50, 43-51. https://doi.org/10.17221/56/2012-PPS
Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., Soja, G., 2014. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science. 177, 3–15. https://doi.org/10.1002/jpln.201200282
Maman, N., Mason, S.C., Lyon, D.J., Dhungana, P., 2004. Yield components of pearl millet and grain sorghum across environments in the Central Great Plains. Crop Science. 44, 2138-2145.https://doi.org/10.2135/cropsci2004.2138
Mehmood, S., Saeed, D.A., Rizwan, M., Khan, M.N., Aziz, O., Bashir, S., Ibrahim, M., Ditta, A., Akmal, M., Mumtaz, M.A., 2018. Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiology Biochemestry. 132, 345-355.https://doi.org/10.1016/j.plaphy.2018.09.019
Merajipoor, M., Movahhedi Dehnavi, M., Salehi, A., Yadavi, A., 2020. Improving grain yield, water and nitrogen use efficiency of Nigella sativa with biological and chemical nitrogen under different irrigation regimes. Scientia Horticulturae. 260, 1-8. https://doi.org/10.1016/j.scienta.2019.108869
Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R. A., Carrao, H., 2018. Global changes in drought conditions under different levels of warming. Geophysical Research Letters, 45, 3285-3296. https://doi.org/10.1002/2017GL076521
Ozer, H., Cobana, F., Sahinb, U., Orsb S., 2020. Response of black cumin (Nigella sativa L.) to deficit irrigation in a semi-arid region: Growth, yield, quality, and water productivity. Industrial Crops and Products, 144, 11-18. https://doi.org/10.1016/j.indcrop.2019.112048
Rezaei-Chiyaneh, E., Seyyedi, S., Ebrahimian, M., Siavash, E., Moghaddam, S., Damalas, C.A., 2018. Exogenous application of gamma-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.). Industrial Crops and Products, 112, 741-748. https://doi.org/10.1016/j.indcrop.2017.12.067
 Sattar, A., Sher, A., Ijaz, M., Irfan, M., Butt, M., Abbas1, T., Hussain, S., Abbas, A., Ullah, M.S., Cheema. M.A., 2019. Biochar Application Improves the Drought Tolerance in maize Seedlings. Phyton, International Journal of Experimental Botany. 88, 379-388. https://doi.org/10.32604/phyton.2019.04784
Seleiman, M.F., Refary, Y., Al-Suhaibani, N., Al-Ashkar, I., El-Hendawy, S., Hafez, E.M., 2019. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy. 9, 637.https://doi.org/10.3390/agronomy9100637
Semida, W.M., Beheiry, H.R., Setamou, M., Simpson, C.R., Abd El-Mageed, T.A., Rady, M.M., Nelson, S.D., 2019. Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany. 127, 333-347. https://doi.org/10.1016/j.sajb.2019.11.015
Shimakawa, G., Miyake, C., 2018. Oxidation of P700 Ensures Robust Photosynthesis. Frontiers in Plant Science. 172, 1443-1450. https://doi.org/10.3389/fpls.2018.01617
Takagi, D., Ishizaki, K., Hanawa, H., Mabuchi, T., Shimakawa, G., Yamamoto, H., Miyake, C., 2017. Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiology Plant. 161, 56-74. https://doi.org/10.1111/ppl.12562
Zhang, M., Ok, Y.S., 2014. Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Management. 5, 255–257.   https://doi.org/10.1080/17583004.2014.973684