Aditya, J.P., Bhartiya, P., Bhartiya, A., 2011. Genetic variability, heritability and character association for yield and component characters in soybean (
Glycine.
max L.). Journal of Central European Agriculture. 12, 27-34.
https://doi.org/10.5513/JCEA01/12.1.877
Babaei, H.R., Zeinali-khaneghah, H., Talei, A.R., 2012. Genetic Analysis of agronomic traits and seed shattering resistance in soybean (
Glycine max L.). Seed and Plant Improvement Journal. 28, 593-609. [In Persian].
https://doi.org/10.22092/spij. 2017.111130
Bennani, S., Nsarellah, N., Jibene, M., Tadesse, W., Birouk, A., Ouabbou, H., 2017. Efficiency of drought tolerance indices under different stress severities for bread wheat selection. Australian Journal of Crop Science. 1, 395-405.
https://doi.org/10.21475/ajcs.17.11.04.pne272.
Choukan, R., Taherkhani, T., Channadha, M. R., Khodarahmi, M., 2006. Evaluation of drought tolerance in grain maize inbred lines usines drought tolerance indices. Iranian Journal of Agricaltural Sciences. 8,79-89. [In Persian].
https://doi.org/20.1001.1.15625540.1385.8.1.7.6
Falconer, D.S., 1989. Introduction to Quantitative Genetics. third edition, Langman Scientific and Technical. New York, USA.
Farshadfar, M., Farshadfar, E. 2008. Genetic variability and path analysis of chickpea (
Cicer arietinum L.) landraces and lines. Journal of Applied Science. 8, 3951-3956.
https://doi.org/10.3923/jas.2008.3951.3956
Farshadfar, E., Poursiahbidi, M.M., Safavi, S. M., 2018. Assessment of drought tolerance in land races of bread wheat based on resistance/ tolerance indices. International Journal of Advanced Biological and Biomedical Research. 6, 233-245.
Fehr, W.R., Caviness, C.E. 1977., Stages of Soybean Development. Special Report No. 80, Cooperative Extension Service, Agriculture & Home Economics, Experimental Station. Iowa State University, USA. Coden: IWSRBC (80) 1-12 (1977)
Fernandez, G.C.J., 1992. Effective selection criteria for assessing plant stress tolerance. In: Kuo CG (eds). Adaptation of Food Crops to Temperature and Water Stress. International symposium. Aug. 13-18. 1992. Shanhua, Taiwan.
https://doi.org/10.22001/wvc.72511
Fischer, R.A., Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal Agriculture. Research. 29, 897-912.
https://doi.org/10.1071/AR9780897.
Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi, G.L., Borghi, B., 1997. Evaluation of field and laboratory of drought and heat stress in winter cereals. Canadian Journal of Plant Science. 77, 523-531.
https://doi.org/10.4141/P96-130.
Giordani, W., Gonçalves, L.S.A., Moraes, L.A.C.,Ferreira, L.C.,Neumaier, N., Farias, J.R.B., Nepomuceno, A.L., de Oliveira, M.C.N., Mertz-Henning, L.M., 2019. Identification of agronomical and morphological traits contributing to drought stress tolerance in soybean. Australian Journal of Crop Science. 13, 35-44.
https://doi.org/10.21475/ajcs.19.13.01.p1109
Iqbal, S., Mahmood, M., Tahira, M., Ali, M., Anwar, M., Sarwar. M., 2003. Path coefficient analysis in different genotypes of soybean (
Glycine max L. Merril). Pakistan Journal of Biological Sciences. 6, 1085-1087.
https://doi.org/10.3923/pjbs.2003.1085.1087
Kobraee, S., Shamsi. K., 2011. Evaluation of soybean yield under drought stress by path analysis. Australian Journal of Basic and Applied Sciences. 5, 890-895.
Kokuban, M., Shimada, S., Takahashi. M., 2001. Flower abortion caused by parenthesis water deficit is not attributed to impairment of pollen in soybean. Crop Science. 4, 1517–1521.
https://doi.org/10.2135/cropsci2001.4151517x
Kuswantoro, H., 2017. The role of heritability and genetic variability in estimated selection response of soybean lines on tidal swamp land. Pertanika Journal of Tropical Agriculture Science. 40, 319 – 328.
Liu, Y., 2004. Physiological regulation of pod set in soybean (Glycine max L. Merr.) during drought at early reproductive stages. Ph.D. Dissertation. Department of Agricultural Sciences. The Royal Veterinary and Agricultural University. Copenhagen. Denmark.
Machikowa, T., Laosuwan, P., 2011. Path coefficient analysis for yield of early maturing soybean. Songklanakarin Journal of Science Technology. 33, 365-368.
Mahbub, M.M., Rahman, M.M., Hossain, M.S., Mahmud, F., Mir Kabir, M.M., 2015. Genetic variability, correlation and path analysis for yield and yield components in soybean. American- Eurasian Journal of Agricultural and Environmental Sciences. 15, 231-236.
https://doi.org/10.5829/idosi.aejaes.2015.15.2.12524
Mejaya, M.J., Suhartina, S., Purwantoro, P., Nugrahaeni, N., Sundari, T., 2022. Genetic parameters of agronomic traits in soybean (
Glycine max L. Merrill) genotypes tolerant to drought Cite as: AIP Conference Proceedings. 24–25 May 2021. Bogor, Indonesia. Retrieved april 10, 2022. from
https://doi.org/10.1063/5.0075159
Mesfin, H.H., 2018. Path analysis, genetic variability and correlation studies for soybean (
Glycine max L. Merill) for grain yield and Secondary traits at Asosa. Greener Journal of Plant Breeding and Crop Science. 6, 35-46.
https://doi.org/10.15580/GJPBCS.2018.3.111418158
Moosavi, S.S., Yazdi-Samadi, B., Naghavi, M. R., Zali, A.A., Dashti, H., Pourshahbazi, A., 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. DESERT. 12, 165-178.
Soares, I.O., Bianchi, M.C., Bruzi, A.T., Gesteira, G.S., Silva, K.B., Guilherme, S.R., Cianzio, S.R., 2020. Genetic and phenotypic parameters associated with soybean progenies in a recurrent selection program. Crop Breeding and Applied Biotechnology. 20,1- 8.
https://doi.org/10.1590/1984-70332020v20n4a59
Teixeira, F.G., Hamawaki, O.T., Nogueira, A.P.O., Hamawaki, R.L., Jorge, G.L., Hamawaki, C.L., Machado, B.Q.V., Santana, A.J.O., 2017. Genetic parameters and selection of soybean lines based on selection indexes.Genetic Molecolar Research. 16,1-17.
https://doi.org/10.4238/gmr16039750
Varnica, I., Petrovic, S., Reberic, A., Guberac, S., Jukic, K., Jukic, G.,2018. Characterization and interrelationships of soybean (
Glycine max L.Merrill) yield components during dry and humid seasons. Journal of Central European Agriculture. 19, 466-481. https://doi.org/
https://doi.org/10.5513/JCEA01/19.2.2148
Vianna, M.S., Nogueira, A.P.O., Hamawaki, O.T., Sousa, L.B., Gomes, G.F., Glasenapp, J.S., Hamawaki, R.L., Silva, C.O., 2019. Selection of lineages, genetiv parameters and correlations between characters. Bioscience Journal.35, 1300-1314. https://doi.org/10.14393/BJ-v35n5a2019-42656
Yan, R. L. C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S., Sun, X., 2020. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought tolerant coefficient of yield. BMC Plant Biology. Retrieved April 15, 2022. from
https://doi.org/10.1186/s12870-020-02519-9.
Zali, H., Barati, A., 2020. Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding. 12, 93-104.
https://doi.org/ 10.29252/jcb.12.34.93
Zhang, J., Song, Q., Cregan, P. B., Nelson, R. L., Wang, X., Wu, J., Jiang, G. L., 2015. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (
Glycine max) germplasm. BMC Genomics.Retrieved april 1, 2022.
https://doi.org/10.1186/s12864-015-1441-4.