نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه زراعت، دانشکده کشاورزی، دانشگاه بیرجند

2 پژوهشگر مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد

3 عضو هیئت‌علمی گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بیرجند

4 گروه پژوهشی گیاه و تنش‌های محیطی، دانشگاه بیرجند

چکیده

تنش‌های محیطی به‌ویژه تنش خشکی از طریق تأثیر بر فرایندهای فیزیولوژیکی و فیتوهورمون‌ها سنتز مواد مؤثره گیاهی را شدیداً تحت تأثیر قرار می‌دهند. در این راستا آزمایشی به‌صورت اسپلیت‌پلات در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 98-1397 در مشهد روی گیاه آویشن باغی اجرا شد. کرت اصلی شامل سه سطح تأمین رطوبت (در 40، 65 و 90 درصد ظرفیت زراعی) و کرت فرعی سطوح الیسیتوری شامل (1) شاهد عدم کاربرد، (2) 150 میکرومولار سیکلودکسترین، (3) 75 نانومولار کروناتین + 150 میکرومولار سیکلودکسترین، (4) 150 نانومولار کروناتین + 150 میکرومولار سیکلودکسترین، (5) 150 میکرومولار متیل جاسمونات + 150 میکرومولار سیکلودکسترین و (6) 300 میکرومولار متیل جاسمونات + 150 میکرومولار سیکلودکسترین بودند. بالاترین میزان محتوای پرولین برگ (از 5.5 تا 5.8 میکرومول بر گرم برگ تازه) در برهمکنش 4 سطح دارای تیماری الیسیتور (سطوح 3، 4، 5 و 6) تحت سطح تأمین رطوبت در 40 درصد ظرفیت زراعی در یک گروه، مشاهده شدند. بیشترین و کمترین نشت الکترولیت‌ها (به ترتیب 47.6 و 22.1 درصد) مربوط به برهمکنش تیمارهای الیسیتوری کنترل در سطح تأمین رطوبت 40 درصد ظرفیت زراعی و تیمار 150 میکرومولار متیل‌جاسمونات + 150 میکرومولار سیکلودکسترین در سطح تأمین رطوبت در 90 درصد ظرفیت زراعی بود. بیشترین عملکرد خشک سرشاخه، برگ و اسانس (به ترتیب 5.64، 3.2 تن و 65.9 کیلوگرم در هکتار) تحت تأمین رطوبت در 90 درصد ظرفیت زراعی به دست آمد. به‌غیراز درصد اسانس، همبستگی بسیار معنی‌داری بین کلیه صفات اندازه‌گیری شده شامل قطر تاج پوشش، ارتفاع، نشت الکترولیت‌ها، محتوای پرولین، محتوای نسبی آب برگ، عملکرد تر و خشک سرشاخه، عملکرد خشک برگ و ساقه و عملکرد اسانس برقرار بود. اگرچه برهمکنش تیمارها بر برخی صفات فیزیولوژیکی تأثیرگذار بود اما عملکرد کمی و کیفی گیاهان تحت تأثیر سطوح رطوبتی قرار گرفتند.

کلیدواژه‌ها

موضوعات

Alfermann, A.W., 2018. Production of natural products by plant cell and organ cultures. In: Roberts, J.A. (ed.), Annual Plant Reviews book series, Functions and Biotechnology of Plant Secondary Metabolites. 39, 381-399. https://doi.org/10.1002/9781119312994.apr0422
Alikhani, O., Abbaspour, H., Safipour afshar, A., Motevalizadeh Kakhaki, A.R., 2019. Effects of methyl jasmonate on cadmium accumulation, antioxidant capacity and some physiological traits of wheat seedlings (Triticum aestivum L.). Journal of Plant Research (Iranian Journal of Biology), 32(4), 886-897. [In Persian with English Summary].
Asada, K., 1999. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology. 50, 601–639. https://doi.org/10.1146/annurev.arplant.50.1.601
Askary, M., 2017. Evaluation of some morpho-physiological and phytochemical traits of Thymus vulgaris L. and Thymus daenensis L. species in drought conditions and the use of manure. Ph.D. Thesis, Department of Agronomy and Plant Breeding, University of Birjand, Birjand, Iran [In Persian].
Askary, M., Behdani, M.A., Parsa, S., Mahmoodi, S., Jami Al-Ahmadi, M., 2018. Water stress and manure application affect the quantity and quality of essential oil of Thymus daenensis and Thymus vulgaris. Industrial Crops and Products, 111, 336-344. https://doi.org/10.1016/j.indcrop.2017.09.056
Baenas, N., Garcia-Viguera, C., Moreno, D.A., 2014. Elicitation: A tool for enriching the bioactive composition of foods. Molecules, 19, 13541–13563. https://doi.org/10.3390/molecules190913541 
Bandurska, H., Stroin-ski, A., Kubis´, J., 2003. The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiologiae Plantarum., 25, 279–285. https://doi.org/10.1007/s11738-003-0009-0
Barker, D.G., Sullivan, C.Y., Moser, L.E, 1993. Water deficit effects on osmotic potential, cellwall elasticity, and proline in five forage grasses. Agronomy Journal. 85, 270-275. https://doi.org/10.2134/agronj1993.00021962008500020020x 
Bates, L.S., Waldern, R.P., Tear, I.D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39, 207-207.
Blackman, S.A., Obendorf, R.L., Lepold, A.C., 1995. Desiccation tolerance in developing soybean seeds: The role of stress proteins. Plant Physiology, 93, 630-638. https://doi.org/10.1111/j.1399-3054.1995.tb05110.x
Blum, A. 1988. Plant Breeding for stress Environments. CRC Press. Inc. 231p. https://doi.org/10.1201/9781351075718
Blum, A., 1996. Crop response to drought and the interpretation adaptation. Plant Growth Regulation. 20, 135-148. (1996). https://doi.org/10.1007/BF00024010
Cabuslay, G.S., Ito, O., Alejar, A.A., 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science. 163, 815-827. https://doi.org/10.1016/S0168-9452(02)00217-0
Castrillo, M., Turujillo, I., 1994. Ribulose-1, 5 bisphosphate carboxylase activity and chlorophyll and protein contents in two cultivares of French bean plants under water stress and rewatering. Photosynthetica. 30, 175-181.
Chaves, M.M., Pereira, J.S., Maroco, J., Rodriques, M.L., Ricardo, C.P.P., Osorio, M.L., Carvatho, I., Faria, T., Pinheiro, C., 2002. How plants cope with water stress in the field photosynthesis and growth? Annuals of Botany. 89, 907-916. https://doi.org/10.1093/aob/mcf105
Gallego, A., Imseng N., Bonfill M., Cusido R.M., Palazon J., Eibl R., Moyano E., 2015. Development of a hazel cell culture-based paclitaxel and baccatin III production process on a benchtop scale. Journal of Biotechnology. 195, 93–102. https://doi.org/10.1016/j.jbiotec.2014.12.023
Ghaderi, A.A., 2015. Effects of salicylic acid and jasmonic acid on morphological and physiological traits of medicinal plant thymus vulgaris under drought stress (Thymus vulgaris L.). MSc dissertation. Department of Horticulture and Landscape. University of Zabol. Zabol, Iran. [In Persian].
Ghassemian, M., Lutes, J., Chang, H., Lange, I., Chen, W., Zhu, T., Wang, X., Lange, B.M., 2008. Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Phytochemistry. 69, 2899–2911. https://doi.org/10.1016/j.phytochem.2008.09.020
Hashemi, S., 2016. Evaluation the effect of coronatine pretreatment on stress zinc oxide synthesized by olive and aleo vera on soybean plant. Ph.D. Thesis, Department of Biology, Shahid Bahonar University of Kerman. Kerman, Iran. [In Persian].
Hornok, L., 1988. Effect of environmental factors on the production of some essential oil plants. In: Lawrence, B.M., Mookherjee, D.B., Willis, B.J. (eds.), Flavors and Fragrances: A World Perspective. Elsevier, Amsterdam. pp. 129-140
Jamzad, Z., 2009. Thymus and Satureja species of Iran. Research Institute of Forests and Rangelands. 171p. [In Persian].
Kafi, M., Borzoee, A., Salehi, M., Kamandi, A., Masoumi, A., Nabati, J., 2014. Physiology of Environmental Sstresses in Plants. Jahad Daneshgahi Press, Mashhad, Iran 502P. [In Persian].
Klarzynski, O., Friting, B., 2001. Stimulation of plant natural defenses. Comptes Rendus Biologies Academic Science. 324, 953–963. https://doi.org/10.1016/s0764-4469(01)01371-3
Lebaschy, M.H., Sharifi Ashoorabadi, E., 2004. Growth indices of some medicinal plants under different water stresses. Iranian Journal of Medicinal and Aromatic Plants. 20, 249-261. [In Persian with English summary].
Letchamo, W., Gosselin, A., 1996. Transpiration, essential oil glands, epicuticular wax and morphology of Thymus vulgaris are influenced by light intensity and water supply. Journal of Horticultural Science, 71, 123-134. https://doi.org/10.1080/14620316.1996.11515388
Levitt, J., 1980. Responses of Plants to Environmental Stresses. Vol. II: Water, radiation, salt, and other stresses. Academic Press, United Kingdom
Littleson, M.M., Russell, C.J., Frye, E.C., Ling, K.B., Jamieson, C., Watson, A.J.B., 2016. Synthetic approaches to coronafacic acid coronamic acid and coronatine. Synthesis. Vol. 48. https://doi.org/10.1055/s-0035-1562552
Dell-Valle, E.M., 2003. Cyclodextrins and their uses: a review. Process Biochemistry. 39, 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9
Marin, M., Budimir, S., Janosevic, D., Marin, P., Duletic, S., Grbic, M., 2008. Morphology, distribution, and histochemistry of trichomes of Thymus lykae Degen and Jav. (Lamiaceae). Archives of Biological Sciences. 60, 667–672. https://doi.org/10.2298/ABS0804667M
Miranshahi, B., Sayyari, M., 2016. Methyl jasmonate mitigates drought stress injuries and affects essential oil of summer savory. Journal of Agricultureal Science and Technology (JAST). 18, 1635-1645.
Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9.
Moein Alishah H., Heidari R., Hassani A., Asadi Dizaji A., 2006. Effect of water stress on some morphological and biochemical characteristics of purple Basil (Ocimum basilicum L.). Journal of Biological Science. 6, 763-767. https://doi.org/10.3923/jbs.2006.763.767
Mohamed, H.I., Latif, H.H., 2017. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiology and Molecular Biology of Plants. 23, 545–556. https://doi.org/10.1007/s12298-017-0451-x
Mohammadi, H., Amirikiaa, F., Ghorbanpour, M., Fatehic, F., Hashempou, H., 2019. Salicylic acid induced changes in physiological traits and essential oil constituents in different ecotypes of Thymus kotschyanus and Thymus vulgaris under well-watered and water stress conditions. Industrial Crops and Products. 129, 561-574. https://doi.org/10.1016/j.indcrop.2018.12.046
Moradi, P., 2018.The impact of drought stress on growth and hormone alterations in Thyme plant. journal of plant process and function, 6,311-322.
Moradi, P., 2018. The impact of drought stress on growth and hormone alterations in Thyme plant . Journal of Plant Process and Function. 6(19), 311-322. [In Persian with English summary].
Munns, R., 1993. Physiological process limiting plant growth in saline soil: some dogmass and hypotheses. Plant, Cell and Environment.16, 15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
Nikolić, M., Glamočlija, J., Ferreira, I.C.F.R., Calhelha, R.C., Fernandes, Â., Marković, T., Marković, D., Giweli, A., Soković, M., 2014. Chemical composition antimicrobial antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products, 52. 183–190. https://doi.org/10.1016/j.indcrop.2013.10.006.
Oksman-Caldentey, K.M., Inzé, D., 2004. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science. 9, 433-440. https://doi.org/10.1016/j.tplants.2004.07.006.
Onrubia, M., A., 2012. Molecular Approach to Taxol Biosynthesis. Ph.D. Thesis, Universitat Pompeu Fabra, Barcelona, Spain.
Petropoulos, S.A., Dimitra, D., Polissiou, M.G., Passam, H.C., 2008. The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Scientia Horticulturae, 115, 393-397. https://doi.org/10.1016/j.scienta.2007.10.008.
Prasanth Reddy, V., Ravi Vital, K., Varsha, P.V., Satyam, S., 2014. Review on Thymus vulgaris traditional uses and pharmacological properties. Medicinal and Aromatic Plants, 3: 164. https://doi.org/10.4172/2167-0412.1000164
Rassam, G., Dadkhah, A., Khoshnood-Yazdi, A., 2014. Evaluation of water deficit on morphological and physiological traits of hyssop (Hyssopus officinalis L.). Iranian Jouran of Agronomy Sciences, 5(10), 1-12. [In Persian with English summary].
Ritchie, S.W., Nguyen, H.T., Holaday, A.S., 1990. Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Science. 30, 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x
Rubio, V., Bustos, R., Luisa, M.L., Irigoyen, X., Cardona-Lopez, Rojas-Triana, M., Paz-Ares, J., 2009. Plant hormones and nutrient signaling. Plant Molecular Biology. 69, 361–373. https://doi.org/10.1007/s11103-008-9380-y
Sabater-Jara, A.B., Onrubia, M., Moyano, E., Bonfill, M., Palazón, J., Pedreño, M.A., Cusidó, R.M., 2014. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures. Plant Biotechnology Journal. 12, 1075–1084. https://doi.org/10.1111/pbi.12214
Sanchez, F.J., Manzanares, M., Andres,E.F., Tenorio,J.L.,and Ayerbe,. L., 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research. 59, 225-235. https://doi.org/10.1016/S0378-4290(98)00125-7
Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Ab-dul-Wajid, H.H., Battaglia, M.L., 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 10, 259. https://doi.org/10.3390/plants10020259
Sharma, A., Shahzad, B., Kumar, V., Kohli, S.K., Sidhu-Gagan, P.S., Bali-Aditi S., Handa, N., Kapoor, D., Bhardwaj, R., Zheng, B., 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress biomolecules. 9, 285. https://doi.org/10.3390/biom9070285
Shi, D., Sheng, Y., 2005. Effects of various salt-alkaline mixed stress conditions on sunflower seedling and analysis of their stress factors. Environmental and Experimental Botany. 54, 8-21. https://doi.org/10.1016/j.envexpbot.2004.05.003
Soltani, A., Faraji, A., 2011. Soil, Water and Plant Relationship. Jahad Daneshgahi Press, Mashhad, Iran. 246. [In Persian].
Sreevalli, Y., Baskaran, K., Chandrashekara, R., kuikkarni, R., SuShil Hasan, S., Samresh, D., Kukre, J., Ashok., A., Sharmr Singh, K., Srikant, S., and Rakesh, T., 2001. Preliminary observations on the effect of irrigation frequency and on yield and alkaloid concentration in petriwinkle. Journal of Medicine and Aromatic Plant Sciences. 22, 356-358.
Stahl-Biskup, E., Sáez, F., 2002. Thyme: the Genus Thymus. London: Taylor & Francis.
Sueldo, R.J., Invernati, A., Plaza, S.G., Barassi, C.A., 1996. Osmotic stress in wheat seedlings: effects on fatty acid composition and phospholipid turnover in coleoptiles. Cereal Research Communications. 24(1), 77–84. http://www.jstor.org/stable/23783920
Taiz, L. Zeiger, E., Moller, I.M., Murphy, A., 2015. Plant Physiology and Development. 6th Edition, Sinauer Associates, Sunderland, CT
Uppalapati, S.R., Ayoubi, P., Weng, H., Palmer, D.A., Mitchell, R.E., Jones, W., Bender, C.L., 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. The Plant Journal. 42, 201–217. https://doi.org/10.1111/j.1365-313X.2005.02366.x
Wang, B., Li, Z., Eneji, E.A., Tian, X., Zhai, Z., Li, J., Duan, L., 2008. Effects of coronatine on growth gas exchange traits chlorophyll content antioxidant enzymes lipid peroxidation in maize (Zea mays L.) seedling under simulated drought stress. Plant Production Science. 11, 283-290. https://doi.org/10.1626/pps.11.283
Wani, A R., Yadav, K., Khursheed, A., Rather, M.A., 2020. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microbial Pathogenesis. 152. https://doi.org/10.1016/j.micpath.2020.104620
Zare Dehabadi, S., 2013. Evaluation the effects of coronatine and sSodium nitroprusside pretreatment in reduction of oxidative stress induced by arsenic as heavy metal and change in some secondary metabolites in Ocimum basilicum L. Ph. D. Thesis, Department of Biology, Shahid Bahonar University of Kerman, Kerman, Iran [In Persian].