نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 کارشناسی‌ارشد زراعت، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دکتری زراعت، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

به‌‌منظور ارزیابی اثر کادمیم بر برخی از صفات ذرت (Zea mays L.) و سویا (Glycine max L.) در کشت خالص و مخلوط، آزمایشی در گلخانه دانشگاه علوم کشاورزی و منابع طبیعی ساری به‌صورت فاکتوریل در قالب طرح کاملا تصادفی با چهار تکرار اجرا شد. فاکتور اول غلظت‌های کادمیم شامل 0، 50، 100، 150 و 200 میلی‌گرم کادمیم در کیلوگرم خاک بود. فاکتور دوم نسبت‌های کشت ذرت و سویا (ذرت  در کشت خالص، سویا  در کشت خالص، ذرت در کشت مخلوط و سویا  در کشت مخلوط) بود. بذرها در گلدان‌های پنج کیلوگرمی کشت شدند و تراکم چهار بوته در گلدان در نظر گرفته شد و دو ماه پس از کشت بذر،  بوته‌ها برداشت شدند. نتایج بدست آمده نشان داد که غلظت کادمیم شاخساره ذرت در هر دو سیستم کشت مخلوط و منفرد بیشتر از سویا بود و کشت مخلوط به‌ویژه در سطوح بالا باعث افزایش غلظت کادمیم در شاخساره ذرت و سویا شد. همچنین با افزایش غلظت کادمیم در خاک، غلظت این عنصر در ریشه به‌طور خطی در تمامی سیستم‌های کشت افزایش یافت. ذرت نسبت به سویا در جذب و انباشت کادمیم در ریشه توانایی بیشتری داشت. همچنین کشت مخلوط ذرت و سویا باعث افزایش غلظت کادمیم در ریشه این گیاهان شد. به­طوری­که بیشترین غلظت کادمیم ریشه در کشت مخلوط برای گیاهان ذرت و سویا به‌ترتیب 105.97 و 60.46 میلی‌گرم در کیلوگرم ماده خشک ثبت شد. وزن خشک ذرت و سویا در کشت مخلوط نسبت به کشت خالص کمتر بود که به‌نظر می­رسد جذب بیشتر کادمیم در اندام‌های این گیاهان عامل اصلی این موضوع باشد.

کلیدواژه‌ها

موضوعات

Agha Abbasi, K., Bibak, H., Qutbzadeh, S., 2013. Investigation of the effects of cadmium on morphological parameters and physiology of rapeseed seedlings. First National Conference on Bioremediation, Faculty of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran. [In Persian].
Aravind, P., Prasad, M.N.V., 2005. Cadmium-zinc interaction in hydroponic system using Ceratophyllum demersum L.: adaptive echophysiology, biochemistry and molecular toxicology. Brazilian Journal of Plant Physiology. 17, 3-20.
Baghaie, A.H., Mahanpoor, K., 2018. Lead phyto-remediation by corn (Maxima CV.) and white clover in mono culture and mixed culture system in a Pb polluted soil. Iranian Journal of Health and Environment. 11, 75-84. [In Persian with English summary].
Bakhshandeh, E., Soltani, A., Zeinali, E., Kallate-Arabi, M., 2012. Prediction of plant height by allometric relationships in field-grown wheat. Cereal Research Communications. 40(3), 413-422.
Barut, H., 2019. Cadmium-induced changes in growth and micronutrient composition of two pepper cultivars. Applied Ecology and Environmental Research. 17, 2249-2256.
Biria, M., Moezzi, A.A., AmeriKhah, H., 2017. Effect of Sugercan bagasses biochar on maize plant growth, grown in lead and cadmium contaminated soil. Water and Soil. 31, 609-626. [In Persian].
Bojinova, P., Georgiev, B., Krasteva, V., Chuldjian, H., Stanislavova, L., 1994. Investigation about the heavy metal pollution in soils and agricultural crops in the region of nonferrous metal works ‘D. Blagoev’. Soil Science, Agrochemistry and Ecology. 4, 32-40.
Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal. 54, 464-465.
Bremner, J.M., 1970. Nitrogen total, regular kjeldahl method. in methods of soil analysis, part 2: chemical and microbiological properties. (2nd ed.) Agronomy. 9, 610-616.
Chen, J., Wang, X., Zhang, W., Zhang, S., Zhao, F.J., 2020 Protein phosphatase 2A alleviates cadmium toxicity by modulating ethylene production in Arabidopsis thaliana. Plant and Cell Physiology. 43, 1008-1022.
Chiang, P.N., Wang, M.K., Chiu, C.Y., Chou, S.Y., 2006. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environmental Toxicology. 21, 479-488.
Dobrikova, A.G., Apostolova, E.L., Hanc, A., Yotsova, E., Borisova, P., Sperdouli, I., Adamakis, I.D.S., Moustakas M., 2021. Cadmium toxicity in Salvia sclarea L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Frontiers in Plant Science. 209, 111851-111863.
Duarte, B., Delgado, M., Cacador, I., 2007. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere. 69, 836-840.
El-Shanhorey, N.A., El-Sayed, S.G., 2017 The use of Senecio cineraria plants sprayed with citric acid for cadmium pollution phytoremediation. Alexandria Science Exchange Journal. 38, 343-355.
Gee G.W., Bauder., J.W., 1986. Particle-size analysis. in: Klute A. (eds), methods of soil analysis, part 1 - physical and mineralogical methods. 2nd ed. Agronomy Monograph. 9. American Society of Agronomy, Madison. 383-411.
Hassanpour, A., Zahedi, M., Khoshgoftarmanesh, A.H., 2014. Effects of companion crops (bean, soybean and mungbean) on uptake of cadmium from soil by corn and sunflower as the main crops. Journal of Water and Soil Science. 18, 227-242. [In Persian with English summary].
Khan, A.G., 2005. Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology. 18, 355-364.
Konkolewska, A., Piechalak, A., Ciszewska, L., Antos-Krzemińska, N., Skrzypczak, T., Hanć, A., Sitko, K., Małkowski, E., Barałkiewicz, D., Małecka, A., 2020. Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Environmental Science and Pollution Research. 27, 3809-13825.
Li, N.Y., Li, Z.A., Zhuang, P., Zou, B., 2009. Cadmium uptake from soil by maize with intercrops. Water, Air, and Soil Pollution. 199, 45-56.
Lindsay, W.L., Norvell, W.A., 1978. Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42, 421-428.
Lizarazo, C.I., Tuulos, A., Jokela, V., Mäkelä, P.S.A., 2020. Sustainable Mixed Cropping Systems for the Boreal-Nemoral Region. 4, 1-15.
Marques, A., Rangel, A., Castro, P.M.L., 2009. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology. 39, 622-654.
Máthé-Gáspár, G., Anton, A., 2005. Phytoremediation study: Factors influencing heavy metal uptake of plants. Acta Biologica Szegediensis. 49, 69-70
Mclean, E.O. 1982. Soil pH and lime requirement in methods of soil analysis, part 2: chemical and microbial properties. (2nd ed.) Agronomy. 9.
Nascimento, C.W.A., Xing, B., 2006. Phytoextraction: A review on enhanced metal availability and plant accumulation. Scientia Agricola. 63, 299-311.
Neugschwandtner, R.W., Tlustos, P., Komarek, M., Szakova, J., 2008. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma. 144, 446-453.
Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular. Government. Printing Office, Washington D.C. 939, 1-19
Puschenreiter, M., Schnepf, A., Millan, I.M., Fitz, W.J., Horak, O., Klepp, J., Schrefl, T., Lombi, E., Wenzel, W.W., 2005. Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant and Soil. 271, 205-218.
Rhoades, J.D., 1982. Cation exchange capacity. In: Page, A.L., Miller, R.H., Keeney, D.R., (eds.), Methods of soil analysis, chemical and mineralogical properties, Madison, Wisc:ASA, SSSA.
Rohani, S.KH., Samavat, S., Maez Ardalan, M., 2012. Evolution of effectiveness of zeolite for cadmium absorption and dry matter in lettuce plant. Iranian Journal of Agronomy and Plant Breeding. 8, 61-69. [In Persian with English summary].
Shafiq, S., Adeel, M., Raza, H., Iqbal, R., Ahmad, Z., Naeem, M., Sheraz, M., Ahmed, U., Azmi, U.R., 2019. Effects of foliar application of selenium in maize (Zea mays L.) under cadmium toxicity. Biological Forum-An International Journal. 11, 27-37.
Shanbleh, A., Kharabsheh, A., 1996. Stabilization of Cd, Ni and Pb in soil using natural zeolite. Journal of Hazardous Material. 45, 207-217.
Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S., 2005. Chromium toxicity in plants. Environment International. 31, 739-753.
Tabreteh Farahani, N., Baqaei, A.M., Polous, A., 2017. Effect of enriched cow manure with converter sludge on Fe bio-availability in a lead polluted soil. Journal of Water and Soil Conservation. 24, 205-220. [In Persian with English summary].
Tashakori Fard, E., Taghavi Ghasemkheyli, F., Pirdashti, H., Tajick Ghanbary, M.A., Bahmanyar, M.A., 2017. Symbiotic effect of Trichoderma atroviride on growth characteristics and yield of two cultivars of rapeseed (Brassica napus L.) in a contaminated soil treated with copper nitrate. Iranian Journal of Field Crops Research. 15, 74-86. [In Persian with English summary].
Teng, D., Mao, K., Ali, W., Xu, G., Huang, G., Niazi, N.K., Feng, X., Zhang, H., 2020. Describing the toxicity and sources and the remediation technologies for mercury contaminated soil. Royal Society of Chemistry. 10m, 23221-23232.
Walkley, A., Black, I.A., 1934. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37, 29-38.
Woodis, J.T.C., Hunter, G.B., Johnson, F.J., 1977. Statistical studies of matrix effects on the determination of cadmium and lead in fertilizer and material and plant tissue by flame atomic absorption spectrophotometry. Analytical Chemistry Acta. 90, 127-136.
Xiong, P.P., He, C.Q., Oh, K., Chen, X., Liang, X., Liu, X., Cheng, X., Wu, C.L., Shi, Z.C., 2018. Medicago sativa L. enhances the phytoextraction of cadmium and zinc by Ricinus communis L. on contaminated land in situ. Ecological Engineering. 116, 61-66.
Yang, J., Kloepper, J.W., Ryu, C.M., 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science. 14, 1-4.