نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه بقولات پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد

2 دانشیار گروه اگروتکنولوژی دانشگاه فردوسی مشهد

3 دانشجوی کارشناسی ارشد گروه اگروتکنولوژی، دانشگاه فردوسی مشهد

4 استادیار پژوهشی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد

5 دانشجوی دکتری گروه اگروتکنولوژی، دانشگاه فردوسی مشهد

چکیده

انتخاب ارقام متحمل به شوری از راهکارهای جلوگیری از کاهش عملکرد در شرایط تنش است. این پژوهش به‌منظور ارزیابی میزان تحمل به شوری 24 ژنوتیپ عدس به‌صورت کرت‌های خردشده در قالب طرح بلوک کامل تصادفی با سه تکرار در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد در سال 1398 اجرا شد. تنش شوری در سه سطح 0.5، 12 و dS.m-1 16 در کرت‌های اصلی و ژنوتیپ‌های عدس در کرت‌های فرعی قرار گرفتند. نتایج نشان داد در تنش dS.m-1 12 ژنوتیپ‌های MLC6، MLC12، MLC26، MLC120 و MLC178 دارای بقای بالای 60 درصد بودند. در سطح شوری dS.m-1 16 به‌جز ژنوتیپ‌های MLC57، MLC73، MLC94، MLC104 و MLC108 سایر ژنوتیپ‌ها در شوری dS.m-1 16 دارای بقاء بودند و ژنوتیپ‌های MLC178 و MLC26 به ترتیب با 30 و 25 درصد، بیشترین بقاء را دارا بودند. با افزایش سطح تنش شوری محتوای کلروفیل a، رنگ‌دانه‌های فتوسنتزی و فنل در تمامی ژنوتیپ‌ها روندی کاهشی داشت. با افزایش شوری محتوای کلروفیل a در تیمار شاهد از 724/0 به 220/0 میلی‌گرم در گرم ماده تر در شوری dS.m-1 16 رسید. افزایش شوری از 0.5 به dS.m-1 16 سبب افزایش مهار فعالیت رادیکال آزاد DPPH، کاتالاز، پراکسیداز و آسکوربات پراکسیداز در ژنوتیپ‌های MLC117 و MLC178 شد. با افزایش شوری پتانسیل اسمزی منفی‌تر گردید و در شوری dS.m-1 16 دو ژنوتیپ MLC178 و MLC26 که بقای بالای داشتند کمترین پتانسیل اسمزی را به ترتیب با 3.91- و 5.62- مگاپاسکال نشان دادند. تجزیه به مؤلفه‌های اصلی (PCA) نشان داد که مؤلفه اول 41/50 درصد از تغییرات و ویژگی‌های مربوط به رنگ‌دانه‌های فتوسنتزی و پتانسیل اسمزی و مؤلفه دوم نیز 12.66 درصد ویژگی‌های آنتی‌اکسیدانی، متابولیت‌ها و درصد بقاء را توضیح می‌دهد. نتایج حاصل از تجزیه خوشه‌ای نشان‌ داد که ژنوتیپ‌های MLC6، MLC12، MLC26، MLC117، MLC120 و MLC178 در بیشتر صفات مورد بررسی برتر بودند؛ بنابراین انجام آزمایش‌های تکمیلی جهت بررسی تحمل به شوری روی این ژنوتیپ‌ها در شرایط مزرعه توصیه می‌شود.

کلیدواژه‌ها

موضوعات

 
Abe, N., Murata, T., Hirota, A., 1998. Novel 1,1-diphenyl-2-picryhy- drazyl- radical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. Bioscience Biotechnology Biochemistry. 62, 61-662.
Afzal, F., Khan, T., Khan, A., Khan, S., Raza, H., Ihsan, Ahanger, M.A., Kazi, A.G., 2014. Nutrient deficiencies under stress in legumes. In: Azooz, M.M., Ahmad, P. (Eds.), Legumes Under Environmental Stress: Yield, Improvement and Adaptations. Wiley pp. 53-65.
Ahanger, M.A., Agarwal, R.M., 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by 586 potassium supplementation. Plant Physiology and Biochemistry. 115, 449-460.
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207.
Bose, J., Rodrigo-Moreno, A., Shabala, S., 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany. 65, 1241-1257.
Cantabella, D., Piqueras, A., Acosta-Motos, J. R., Bernal-Vicente, A., Hernandez, J. A., Diaz-Vivancos, P., 2017. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiology and Biochemistry. 115, 484-496.
Chawla, S., Jain, S., Jain, V., 2013. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology. 22, 27-34.
Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., Martens, S., 2013. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry. 72, 1-20.
Dawood, M. G., Taie, H. A. A., Nassar, R. M. A., Abdelhamid, M. T., Schmidhalter, U., 2014. The changes induced in the physiological, biochemical and anatomical structure of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany. 93, 54-63.
Dere, S., Gines, T., Sivaci, R., 1998. Spectrophotometric determination of chlorophyll - a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany. 22, 13-17.
Dubois, M., Gilles, K.A., Hamilton, J. K., Rebers, P. A., Smith, F., 1951. A colorimetric method for the determination of sugars. Nature. 168, 167.
FAOSTAT, 2020. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#compare (Accessed: 23 December 2020).
Golezani, K.G., Yengabad, F.M., 2012. Physiological responses of lentil (Lens culinaris Medik.) to salinity. International Journal of Agriculture and Crop Sciences. 4, 1531-1535.
Gururani, M. A., Venkatesh, J., Tran, L. S. P., 2015. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant. 8, 1304–1320.
Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Reza, A., Mohsin, S.M., Al Mahmud, J., Fujita, M., Fotopoulos, V., 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 9, 1-52.
Hasanuzzaman, M., Hossain, M.A., Teixeira da Silva, J.A., Fujita, M., 2012. Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In: Bandi, V., Shanker, A.K., Shanker, C., Mandapaka, M. (Eds.), Crop Stress and its Management: Perspectives and Strategies; Springer: Berlin, Germany, pp: 261-316.
Hassan, H.A.A., Alkhalifeh, M.D.H., Yousef, A.Al S., Beemster, T.S.G., Mousa, S.M.A., Hozzein, N.W., AbdElgawad, H., 2020. Salinity stress enhances the antioxidant capacity of bacillus and planococcus species isolated from saline lake environment. Frontiers in Microbiology. 11, 2191.
Heath, R. L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125, 189-198.
Hoagland, D.R., Arnon, D.L., 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular. 347.
Hussain, S., Bai, Z., Huang, J., Cao, X., Zhu, L., Zhu, C., Khaskheli, M.A., Zhong, C., Jin, Q., Zhang, J., 2019. 1-methylcyclopropene modulates physiological, biochemical, and antioxidant responses of rice to different salt stress levels. Frontiers in Plant Science. 10, 1-18.
Hussain, S., Zhong, C., Bai, Z., Cao, X., Zhu, L., Hussain, A., Zhu, C., Fahad, S., James, A. B., Zhang, J., Jin, Q., 2018. Effects of 1-methylcyclopropene on rice growth characteristics and superior and inferior spikelet evelopment under salt stress. Journal of Plant Growth Regulation. 37, 1368-1384.
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M.S., Saleem, M.H., Adil, M., Heidari, P., Chen, J.T., 2020. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences. 21, 148.
Kaur, N., Kaur, J., Grewal, S. K., Singh, I., 2019. Effect of heat stress on antioxidative defense system and its amelioration by heat acclimation and salicylic acid pre-treatments in three pigeonpea genotypes. Indian Journal of Agricultural Biochemistry. 32, 106-110.
Ma, Y., Kuang, L., He, X., Bai, W., Ding, Y., Zhang, Z., Zhao, Y., Chai, Z., 2010. Effectsof rare earth oxide nanoparticles on root elongation of plants. Chemosphere. 78, 273-279.
Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., Upadhyay, R. S., 2019. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon. 5, 1-20.
Mehla, N., Sindhi, V., Josula, D., Bisht, P., Wani, S. H., 2017. An introduction to antioxidants and their roles in plant stress tolerance. In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress; Khan, M.I.R., Khan, N.A., Eds.; Springer: Singapore, 2017; pp. 1-23.
Mittler, R., 2017. ROS are good. Trends in Plant Science. 22, 11–19.
Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D., Altmann, T., 2015. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany. 66, 5467-5480.
Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D., Altman, T., 2015. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany. 66, 5467-5480.
Negrao, S., Schmockel, S. M., Tester, M., 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany. 119, 1–11.
Nxele, X., Klein, A., Ndimba, B. K., 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany. 108, 261-266.
Ouji, A., El-Bok, S., Mouelhi, M., Ben-Younes, M., Kharrat, M., 2015. Effect of salinity stress on germination of five Tunisian lentil (Lens Culinaris L.) genotypes. European Scientific Journal. 1, 100571
Rahman, A., Nahar, K., Hasanuzzaman, M., Fujita, M., 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science. 7, 609.
Raja, V., Majeed, U., Kang, H., Andrabi, K. I., John, R., 2017. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany. 137, 142-157.
Rameshwaran, P., Qadir, M., Ragab, R., Arslan, A., Majid, G., Abdallah, K., 2016. Tolerance of faba bean, chickpea and lentil to salinity: Accessions salinity response functions. Irrigation and Drainage. 65, 49-60.
Roy, S. J., Negrao, S., Tester, M., 2014. Salt resistant crop plants. Current Opinion in Biotechnology. 26, 115–124.
Sadak, M. Sh., T. Abdelhamid, M., 2015. Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanzen. 67, 119-129.
Sarker, U., Oba, Sh., 2020. The response of salinity stress-induced a. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science. 11, 1-14.
Saxena, S., Joshi, P., Grimm, B., Arora, S., 2011. Alleviation of ultraviolet-C-induced oxidative damage through overexpression of cytosolic ascorbate peroxidase. Biologia. 66, 1052-1059.
Saxena, S.C., Salvi, P., Kamble, N.U., Joshi, P.K., Majee, M., Arora, S., 2020. Ectopic overexpression of cytosolic ascorbate peroxidase gene (Apx1) improves salinity stress tolerance in Brassica juncea by strengthening antioxidative defense mechanism. Acta Physiologiae Plantarum. 42, 1-14.
Shafiee-Khorshidi, M., M.R. Bihamta, F. Khialparast., M.R. Naghavi., 2012. Assessment of geneticvariation in common bean (Phaseolus vulgaris L.) genotypes under drought condition using clusterand canonical discriminant analysis (CDA). Journal of Crop Breeding. 10: 1-17 [In Persian].
Shin, Y. K., Bhandari, S. R., Cho, M. C., Lee, J. G., 2020a. Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology. 61, 433-443.
Shin, Y. K., Bhandari, Sh., Su Jo, J., Woo Song, J., Cheoul Cho, M., Young Yang, E., Gu Lee, J., 2020b. Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy. 10, 1627.
Singh, A., Kumar, A., Yadav, S., and Singh, I. K. 2019. Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene 18: 1-23.
Singleton, V. L., Rossi, J. A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16, 144-158.
Skliros, D., Kalloniati, C., Karalias, G., Skaracis, G.N., Rennenberg, H., Flemetakis, E., 2018. Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Plant and Soil. 429, 451-468.
Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H., Shekar-Shetty, H., Savithri, H., Sudhakar, C., 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science. 141, 1-9.
Taibi, Kh., Taibi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., Mulet, J. M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany. 105, 306-312.
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science. 151, 59-66.
Yamaguchi, K., Mori, H., Nishimura, M., 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant and Cell Physiology. 36, 1157-62.
Zare Mehrjerdi, M., Nabati, J., Massomi, A., Bagheri, A., Kafi, M., 2012. Evaluation of tolerance to salinity based on root and shoot growth of 11 drought tolerant and sensitive chickpea genotypes at hydroponics conditions. Iranian Journal Pulses Research. 2(2), 83-96. [In Persian].
Zhao, G. M., Han, Y., Sun, X., Li, S.H., Shi, Q. M., Wang, C. H., 2015. Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products. 64, 175-181.