نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

2 دانشجوی دکتری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

چکیده

کادمیوم یکی از آلاینده‌های مهم محیط‌زیست است که به‌عنوان یک نگرانی عمده زیست‌محیطی در سراسر جهان اثرات بازدارنده‌ای بر رشد گیاهان دارد. در این پژوهش تأثیر کادمیوم بر رنگیزه­های فتوسنتزی، صفات فیزیولوژیکی و متابولیکی برگ گاوزبان اروپایی در شرایط هیدروپونیک موردبررسی قرار گرفت. گیاهچه‌های گاوزبان اروپایی در مرحله 7-6 برگی به محیط کشت ‌‌هیدروپونیک حاوی غلظت­های مختلف کادمیوم (صفر، 81، 162، 243 و 324 میکرومولار) منتقل شدند و بعد از 12، 24، 48، 72 و 108 ساعت اعمال تنش، نمونه‌برداری و اندازه‌گیری صفات انجام گرفت. نتایج نشان داد میزان رنگیزه‌های فتوسنتزی، شاخص سبزینگی، فلورسانس کلروفیل و فعالیت­های متابولیکی برگ گیاه دارویی گاوزبان اروپایی به‌طور معنی‌داری تحت تأثیر تنش کادمیوم قرار گرفت. با افزایش غلظت کادمیوم و مدت‌زمان تیماردهی، میزان تجمع این عنصر در برگ‌های گاوزبان اروپایی افزایش یافت. تیمار کادمیوم باعث کاهش میزان کلروفیل a و b، کلروفیل کل، کارتنوئیدها در همه زمان­های نمونه‌برداری نسبت به تیمار شاهد گردید. حداکثر کارایی کوانتومی فتوسیستم II و شاخص سبزینگی نیز با افزایش غلظت کادمیوم و مدت‌زمان اعمال تنش کادمیوم، کاهش یافت به‌طوری‌که کمترین مقدار این صفات مربوط به 108 ساعت پس از اعمال تنش با 324 میکرومولار کادمیوم بود. با افزایش شدت تنش کادمیوم، میزان متابولیت‌های ثانویه شامل آنتوسیانین، فنل، فلاونوئید کل و میزان قندهای محلول در برگ‌ها افزایش یافت. بیشترین مقدار این متابولیت‌های ثانویه مربوط به 108 ساعت پس از تیمار با غلظت 324 میکرومولار کادمیوم بود. به‌طورکلی نتایج این تحقیق نشان داد که افزایش غلظت و مدت‌زمان اعمال تنش کادمیوم از طریق کاهش میزان رنگیزه‌ها فتوسنتزی و افزایش میزان فلورسانس کمینه کلروفیل بر فتوسنتز گیاه تأثیر منفی می‌گذارد و از طرف دیگر تجمع کادمیوم در برگ‌های گاوزبان اروپایی موجب افزایش میزان متابولیت‌های ثانویه در این گیاه می‌گردد.

کلیدواژه‌ها

موضوعات

 
Abdollahi, S., Golchin, A., 2018. Biomass production and cadmium accumulation and translocation in three varieties of cabbage. Iranian Journal of Soil and Water Research. 49, 243-259. [In Persian with English Summary]
Agami, R.A., Mohamed, G.F., 2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety. 94, 164-171.
Al-Farsi, M., Alasalvar, C., Morris, A., Baron, M.G., Shahidi, F., 2005. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. Journal of Agricultural and Food Chemistry. 53, 7592-7599.
Amiri, J., Entesari, S., Delavar, K., Saadatmand, M., Aghamohammad Rafie, N., 2012. The effect of silicon on cadmium stress in Echium amoenum. World Academy of Science, Engineering and Technology. 62, 242-245.
Araujo, R.P., de Almeida, A.A.F., Pereira, L.S., Mangabeira, P.A., Souza, J.O., Pirovani, C.P., Baligar, V.C., 2017. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety. 144, 148-157.
Asadi-Samani, M., Bahmani, M., Rafieian-Kopaei, M., 2014. The chemical composition, botanical characteristic and biological activities of Borago officinalis: a review. Asian Pacific Journal of Tropical Medicine. 7, S22-S28.
Azizollahi, Z., Ghaderian, S.M., Ghotbi-Ravandi, A.A., 2019. Cadmium accumulation and its effects on physiological and biochemical characters of summer savory (Satureja hortensis L.). International Journal of Phytoremediation. 21, 1241-1252.
Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology. 59, 89-113.
Bavi, K., Kholdebarin, B., Moradshahi, A., 2011. Effect of cadmium on growth, protein content and peroxidase activity in pea plants. Pakistan Journal of Botany. 43, 1467-1470.
Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C., 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 10, 178-182.
Chen, S., Xu, B., Liu, L., Luo, Y., Zhou, H., Chen, W., Shen, T., Han, X., Kontes, C.D., Huang, S., 2011. Cadmium induction of reactive oxygen species activates the mTOR pathways, leading to neuronal cell death. Free Radical Biology and Medicine. 50, 624-632.
Chen, X., Wang, J., Chi, Y., Zhao, M.Q., Chi, G.Y., 2011. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies. 52, 41-46.
Clemens, S., Aarts, M.G.M., Thomine, S., Verbruggen, N., 2013. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science. 18, 92-99.
Dalla Vecchia, F., La Rocca, N., Moro, I., De Faveri, S., Andreoli, C., Rascio, N. 2005. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Science. 168, 329-338.
Dezhban, A., Shirvany, A., Attarod, P., Delshad, M., Matinizadeh, M., 2016. Cadmium effect on the chlorophyll fluorescence, chlorophyll pigments and proline contents of Celtis caucasica and Robinia pseudoacacia seedlings leaves. Journal of Plant Research. 28, 746-758. [In Persian with English Summary].
Ekmekci, Y., Deniz, T., Beycan, A., 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology. 165, 600-611.
Farooq, M., Ali, S., Hameed, A., Bharwana, S.A., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., Iqbal, Z., 2016. Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany. 104, 61-68.
Gerami, M., Ghorbani, A., Karimi, S., 2018. Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian Journal of Plant Biology. 10, 81-96. [In Persian with English Summary].
Hajiboland, R., Ebrahimi, N., Poschenrieder, Ch., 2012. Bound putrescine, a distinctive player under salt stress in the natrophilic sugar beet in contrast to glycophyte tobacco. Journal of Sciences, Islamic Republic of Iran. 23, 105-114.
He, J.Y., Ren, Y.F., Zhu, C., Yan, Y.P., Jiang, D.A., 2008. Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica. 46, 466-470.
Hosseini, S., Zare, N., Sheikhzadeh, P., Abootalebi S. 2021, The effect of nano-silicone on biochemical characteristics of Borago officinalis under the cadmium stress. Environmental Stresses in Crop Sciences. [In Persian with English Summary].
Irigoyen, J.J., Einerich, D.W., Sánchez‐Díaz, M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum. 84, 55-60.
Khan, M.D., Mei, L., Ali, B., Chen, Y., Cheng, X., Zhu, S.J., 2013. Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings. BioMed Research International. 2013, 1-10.
Kubi, J., 2005. The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit condition. Acta Physiologie Plantarum. 27, 289-295.
Leng, Y., Li, Y., Ma, Y.H., He, L.F., Li, S.W., 2020. Abscisic acid modulates differential physiological and biochemical responses of roots, stems, and leaves in mung bean seedlings to cadmium stress. Environmental Science and Pollution Research. 28, 6030-6043.
Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 148(11), 350-382.
Lopez-Millan, A.F., Sagardoy, R., Solanas, M., Abadia, A., Abadia, J., 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany. 65, 376-385.
Mahmoudi, F., Sheikhzadeh Mosaddegh, P., Zare, N., Esmaielpour, B., 2017. The effect of hydropriming on germination, growth and antioxidant enzymes activity of borage (Borago officinalis L.) seedling under cadmium stress. Iranian Journal of Field Crop Science. 48, 253-266. [In Persian with English Summary].
Mallick, N., Mohn, F.H., 2003. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotoxicology and Environmental Safety. 55, 64-69.
Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., Witters, N., Thewys, T., Tack, T.M.G., 2010. The use of bio-energy crops (Zea mays) for phytoattenuation of heavy metals on moderately contaminated soils: a field experiment. Chemosphere. 78, 35-41.
Mobin, M., Khan, N.A., 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica guncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology. 164, 601-610.
Naeem, M.A., Shabbir, A., Amjad, M., Abbas G., Imran, M., Murtaza, B., Tahir, M., Ahmad, A., 2020. Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa (Chenopodium quinoa Willd.). Ecotoxicology and Environmental Safety. 191, 1-9.
Nateghi, S., Ghaderian, S.M., Mostajeran, A., 2020. The effect of cadmium on Atropin content and the physiological parameters in Datura stramonium L. Journal of Plant Process and Function. 9, 17-32. [In Persian with English Summary].
Schaller, G., Kieber, J., 2002. Ethylene. The Arabidopsis Book. American Society Plant Biologists. 17p.
Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., Niazi, N.K., 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. Journal of Hazardous Materials. 325, 36-58.
Sheikhzadeh, P., Zare, N., Mahmoudi, F., 2021. The synergistic effects of hydro and hormone priming on seed germination, antioxidant activity and cadmium tolerance in borage. Acta Botanica Croatica. 80, 1-17.
Singh, B.R., Gupta, S.K., Azaizeh, H., Shilev, S., Sudre, D., Song, W.Y., Martinoia, E., Mench, M., 2011. Safety of food crops on land contaminated with trace elements. Journal of Science of Food and Agriculture. 91, 1349-1366.
Solecka, D., 1997. Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiologiae Plantarum. 19, 257-268.
Taherkhani, T., Asghari-Zakaria, R., Omidi, M., Zare, N., 2019. Effect of ultrasonic waves on crocin and safranal content and expression of their controlling genes in suspension culture of saffron (Crocus sativus L.). Natural Product Research. 33, 486-493.
Wagner, G.J., 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology. 64, 88-93.
Walpola, B.C., Arunakumara, K.K.I.U., 2010. Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils. Journal of Agrcultural Sciences. 5, 9-18.
Xue, Z.C., Gao, H.Y., Zhang, L.T., 2013. Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biologia Plantarum. 57, 585-590.
Yaghoubian, Y., Siadat, S.A., Moradi Telavat, M.R., Pirdashti, H., 2016. Quantify the response of growth and chlorophyll fluorescence parameters of lemon balm (Melissa officinalis L.) medicinal plant to cadmium concentration in the soil. Journal of Plant Production Research (JOPPR). 23, 165-185. [In Persian with English Summary].
Zhang, F., Zhang, H., Wang, G., Xu, L., Shan, Z., 2009. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. Journal of Hazardous Materials. 168, 76-84.
Zlatev, Z., Yordanov, I.T., 2004. Effect of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarian Journal of Plant Physiology. 30, 3-18.