نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه آگروتکنولوژی، دانشگاه آزاد اسلامی واحد مهاباد، مهاباد، ایران

2 استادیار گروه آگروتکنولوژی، دانشگاه آزاد اسلامی واحد مهاباد، مهاباد، ایران

3 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

با هدف ارزیابی ژنوتیپ­ های مختلف چغندرقند ازلحاظ خصوصیات بیوشیمیایی و آنتی‌اکسیدانی، 18 رقم تجاری داخل و خارجی تحت شرایط نرمال و تنش کم ­آبی در ایستگاه تحقیقات کشاورزی میاندوآب در دو سال زراعی 97-1396 مورد ارزیابی قرار گرفتند. طرح آزمایشی مورداستفاده اسپلیت‌پلات در قالب طرح بلوک‌های کامل تصادفی بود که در سه تکرار اجرا شد. در این مطالعه دور آبیاری در دو سطح (نرمال برحسب 90 میلی‌متر تبخیر و تنش خشکی بعد از مرحله 10 برگی چغندرقند بر اساس 200 میلی‌متر تبخیر از تشتک تبخیر کلاس A) در کرت‌های اصلی و 18 رقم چغندرقند به کرت‌های فرعی قرار گرفتند. در این مطالعه صفات عملکرد ریشه، درصد استحصال قند، گایاکول پراکسیداز، پلی فنل اکسیداز، سوپراکسید دیسموتاز و پرولین اندازه‌گیری شدند، نتایج نشان داد تنش کم­آبی در مقایسه با شرایط آبیاری نرمال عملکرد ریشه را 17.38 درصد کاهش داد، درحالی‌که محتوی گایکول پراکسیداز، پلی­فنل اکسیداز، سوپراکسید دیسموتاز و پرولین تحت شرایط کم­آبی به ترتیب 118.86، 82.1، 103.61 و 113.92 درصد در مقایسه با شرایط آبیاری نرمال افزایش نشان داد. میانگین ژنوتیپ­ها ازنظر عملکرد ریشه نشان داد ژنوتیپ شماره 10 با متوسط 85.77 تن در هکتار در شرایط آبیاری نرمال و 72.14 تن در هکتار در شرایط تنش کم‌آبی بالاترین عملکرد ریشه را به خود اختصاص داد. تحت شرایط آبیاری نرمال بالاترین مقدار فعالیت آنزیم گایاکول پراکسیداز، پلی فنل اکسیداز، سوپر اکسید دیسموتاز و محتوی پرولین به ترتیب به ژنوتیپ­های 21، 15، 4 و 13 اختصاص داشت. درحالی‌که تحت شرایط تنش کم‌آبی بالاترین مقدار صفات مذکور به ترتیب در ارقام 10، 20، 19 و 3 ثبت شد. بر اساس نتایج تجزیه رگرسیون در شرایط آبیاری نرمال صفات درصد استحصال قند و پرولین با تبین 80 درصد و در شرایط تنش کم‌آبی محتوی پرولین، گایاکول پراکسیداز و سوپراکسید دیسموتاز با تبیین 66.3 درصد از تغییرات عملکرد ریشه به‌عنوان مؤثرترین صفات بر عملکرد ریشه شناسایی شدند.

کلیدواژه‌ها

موضوعات

Abdollahian-Noghabi, M., Radaei-al-amoli, Z., Akbari, G.H.A., Sadat-Nuri, S.A., 2011. Effect of severe water stress on morphological, quantitative and qualitative characteristics of 20 sugar beet genotypes. Iranian Journal of Field Crops Science. 42, 453-464 [In Persian with English summary].
Alam, M.M., Nahar, K., Hasanuzzaman, M., Fujita, M., 2014. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in diferent Brassica species. Plant Biotechnology Reports. 8, 279–293.
Arora, A., Sairam, R, K., Srivastava, G. C., 2002. Oxidative stress and antioxidant system in plants. Plant Physiology, 82, 1227-1237.
Bi, A., Fan, J., Hu, Z., Wang, G., Amombo, E., Fu, J., Hu, T., 2016. Di_erential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses. Frontiers in Plant Science. 7, 453.
Bkhshikhangi, G.R., Javadi, P., Khani, M., Tahmasebi, D., 2011. Effect of drought stress on the qualitative and quantitative characteristics of the new modified sugar beet varieties. Journal of Cellular and Molecular Biotechnology Works. 1, 74-65. [In Persian with English summary].
Boeckx, T., Winters, A.L., Webb, K.J., Kingston-Smith, A.H., 2015. Polyphenol oxidase in leaves: Is there any significance to the chloroplastic ocalization? Journal of Experimental Botany, 66, 3571–3579.
 Fotouhi, K., Majidi, E., Rajabi, A., Azizinejad, R., 2017. Study of genetic variation for drought tolerance in sugar beet half-sib families. Journal of Sugar beet, 33, 1-16. [In Persian with English summary].
Gill, S.S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry.48, 909–930.
Habibi, D., Fatollah Taleghani, D., Oroojnia, S., 2011. Physiological Evaluation of Sugar Beet Genotypes under Drought Stress. 2011 2nd International Conference on Chemical Engineering and Applications IPCBEE vol. 23 (2011) © (2011) IACSIT Press, Singapore.
Halliwell, B., Gutteridge, J.M., 2015. Free radicals in biology and medicine. Oxford University Press, USA, 569 P.
Heuer. B., 1994. Osmoregulatory role of proline in water stress and salt-stressed plants, 363-381. In: Pessarakli. M., (Ed.). Handbook of Plant and Crop Stress. Marcel Dekker Publisher. New York. P. 697.
Hirayama, M., Wada, Y., Nemot, H., 2006. Estimation of drought tolerance based on leaf temperature in upland rice breeding. Breeding Science 56, 47-54
Hosseini, M., Hasanloo, T., Mohammadi, S., 2015. Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola (Brassica napus L.) cultivars under drought stress conditions. Turkish Journal of Agriculture and Forestry, 3, 413-420.
Huguet-Robert, V., Sulpice, R., Lefort, C., Maerskalck, V., Emery, N., Larcher, F.R., 2003. The suppression of osmoinduced stresse response of Brassica napus L. var. oleifera leaf discs by polyunsaturated fatty acids and methyljasmonate. Plant Science. 164,119-127.
Ilkai, M., Foroozeh, P., Habibi, D., Fathollah Taleghani, D., Rajabi, A., Orujnia, S., Davoodifard, M., 2012. Investigation of biochemical characteristics of different sugar beet genotypes under drought conditions. Iranian Journal of Agronomy and Plant Breeding, 8, 87-99. [In Persian with English summary].
Islam, M.D., Kim, J. W., Begum, K., Taher Sohel, A., Lim,Y. S, 2021. Physiological and biochemical changes in sugar beet seedlings to confer stress adaptability under drought condition. Plants. 9, 1-27.
Iturbe-ormaetxe, I., Escuredo, P.R., Arrese-Igor, C., Becana, M., 1998. Oxidative damage in pea plant exposed to water deficit or paraquat. Plant Physiology, 116, 173-181.
Khalili, M., Hamze. H. 2021. Effect of different fertilizer treatments on quantitative and qualitative characteristics of sugar beet (Beta vulgaris.L) under different irrigation regimes. Journal of Agricultural Science and Sustainable Production. 31(1), 171-192. [In Persian].
Khalili, M., Hamze. H., 2019. Effect of super-adsorbent and irrigation levels on quantitative and qualitative characteristics of sugar beet (Beta vulgaris). Journal of Crop Ecophysiology. 13, 395-412. . [In Persian with English summary].
Khozaei, M., Kamgar, A., Haghighi, A., Zand Parsa, S., Sepaskhah, A.R., Razzaghi, F., Yousefabadi, V., Emamd, Y., 2020. Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities. Agricultural Water Management. 238, 1-12.
Krishna, P., Govindasamy Mugesh, B., 2010. Functional Mimics of Glutathione Peroxidase: Bio inspired Synthetic Antioxidants. Accounts of Chemical Research> 43 (11),1408- 1419.
Lee, B. R., Kim, K. Y., Jung, W.J., Avice, J.C., Ourry, A., Kim, T. H., 2007. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany, 58, 1271–1279.
Manivannan, P., Jaleel, C.A., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R., Panneerselvam, R., 2007a. Changes in antioxidant metabolism of Vigna unguiculata L. Walp., by propiconazole under water deficit stress. Colloids Surf. B: Biointerfaces, 57, 69–74
Mir Mahmoudi, T., Fotouhi, K., Hamza, H., Azizi H., 2021. Study of the effect of salinity stress on quantitative and qualitative characteristics of sugar beet genotypes. Environmental Stresses in Crop Sciences, 14, 221-233. . [In Persian with English summary].
Mirzaee, M., Moieni, A., Ghanati, F., 2013. Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two Canola (Brassica napus L.) cultivars. Journal of Agricultural Science and Technology. 15, 593-602.
Monreal, J.A., Jim´enez, E.T., Remesal, E., Morillo-Velarde, R., Garc´ıa-Mauri˜no, S., Echevarr´ıa, C., 2007. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany. 60, 257–267.
Ober, E.S., Luterbacher, M.C., 2002. Genotypic variation for drought tolerance in Beta vulgaris. Oxford Journals. 89, 917-924.
Pahlavanian Miandoab, S.H., Dadashi, M. R., Mir Mahmoudi, T., Shahrooghbi, A., Adjam Norouzi, H., 2021. Study Qualitative and quantitative traits of sugar beet cultivars at different planting times in transplanting and seedling cultivation system in West Azarbaijan area. Journal of Crop Production.13, 23-40. . [In Persian with English summary].
Pidgeon, J.D., Ober, E., Qi, A., Clark, C.J.A., Royal, A., Jaggard, K.W., 2006. Using multi-environment sugar beet variety trials to screen for drought tolerance. Field Crops Research. 95, 268-279.
Sayfzadeh, S., Habibi, D., Fathollah taleghani, D., Kashani, A., Vazan,S., Hossein sadre qaen, S., Habib Khodaei,A., Masoud Mashhadi Akbar Boojar, M., Rashid, M., 2011. Response of antioxidant enzyme activities and root yield in sugar beet to drought stress. International Journal of Agriculture & Biology, 13, 357–362
Schittenhel, M.S., 1999. Agronomic performance of root chichory, Jerursalem artichoke and sugar beet in stress and non-stress environments. Crop Science. 39, 1815-1823.
Shen, C., Zhang, Q., Li, J., Bi, F., Yao, N., 2010. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany. 97, 1602–1609.
Vahidi, H., Rajabi, A., Seyed Hadi, M., Fathollah Taleghani, D., 2013. Screening of sugar beet (Beta vulgaris L.) genotype for drought tolerance. Journal of Agriculture and Crop Sciences. 6(16), 1104-1113.