نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی، علوم باغبانی، دانشگاه زنجان. ایران

2 کارشناس مؤسسه تحقیقات ثبت و گواهی بذر و نهال استان زنجان

3 دانشجوی دکتری، تولید و ژنتیک گیاهی، دانشگاه زنجان. ایران

4 دانش آموخته دکتری، فیزیولوژی گیاهان زراعی

5 مدرس گروه علوم کشاورزی، دانشکده دختران شریعتی و باهنر پاکدشت، دانشگاه فنی و حرفه ای

چکیده

شوری به‌عنوان یکی از مهمترین تنش‌های غیرزنده سبب کاهش رشد، نمو و عملکرد گیاهان شده و کاربرد تنظیم کننده‌های رشد، یکی از راهکارهای مفید جهت کاهش اثرات نامطلوب تنش شوری در گیاهان می‌باشد. به‌منظور بررسی تأثیر محلول‌پاشی سیتوکینین بر صفات مورفوفیزیولوژیکی، عملکرد و اجزای عملکرد سیاه‌دانه، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در گلخانه اجرا گردید. فاکتورهای آزمایش شامل شوری در پنج سطح 0، 3، 6، 9 و 12 دسی زیمنس بر متر محلول‌پاشی سیتوکینین در سه غلظت صفر، 100 و 200 میکرومولار بود. نتایج تجزیه واریانس نشان داد که شوری بر تمام صفات مورد بررسی اثر معنی‌داری داشت. تنش شوری، نشت یونی و پرولین را افزایش و سایر صفات را کاهش داد. بیشترین عملکرد دانه با 2.24 گرم در بوته در تیمار شاهد و کمترین آن با 0.81 گرم در بوته در غلظت 12 دسی‌زیمنس شوری بدست آمد. سیتوکینین بر تمام صفات مورد بررسی به‌جز کلروفیل a، پرولین و تعداد کپسول در بوته اثر معنی‌داری داشت. محلول‌پاشی سیتوکینین سبب کاهش اثرات نامطلوب تنش شوری در گیاه سیاه‌دانه گردید و غلظت 100 میکرومولار نسبت به غلظت 200 میکرومولار سیتوکینین از کارایی بالاتری برخوردار بود. کم‌‌ترین عملکرد دانه (1.51 گرم در بوته) در تیمار عدم کاربرد سیتوکینین و بیشترین عملکرد دانه (1.83 گرم در بوته) در غلظت 200 میکرومولار سیتوکینین مشاهده شد. محلول‌پاشی سیتوکینین روی تمام صفات موفوفیزیولوژیکی مورد مطالعه در شرایط تنش شوری اثر گذار بود. در شرایط تنش شوری، کاربرد سیتوکینین فقط بر تعداد دانه در کپسول اثرگذار بود و بر عملکرد و سایر صفات مرتبط با عملکرد اثر معنی‌داری نداشت. نتایج بدست آمده نشان داد که محلول‌پاشی سیتوکینین در شرایط تنش شوری ممکن است سبب بهبود برخی صفات شود ولی این امر به‌منزله افزایش قطعی عملکرد و اجزای عملکرد در شرایط تنش شوری نبوده و ممکن است تغییری در عملکرد دانه حاصل نشود.

کلیدواژه‌ها

موضوعات

Ahmadi, A., Emam, Y., Pessarakli, M., 2010. Biochemical changes in maize seedlings exposed to drought stress conditions at different nitrogen levels. Journal of Plant Nutrition. 33, 541-556.
Alshammari, A.S., 2017. Light, salinity and temperature effects on the seed germination of Nigella sativa L. Global Journal of Biology, Agriculture and Health Sciences. 6, 25-31.
Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiology. 24, 1-15.
Aslam, M., Sultana, B., Anwar, F., Munir, H., 2016. Foliar spray of selected plant growth regulators affected the biochemical and antioxidant attributes of spinach in a field experiment. Turkish Journal of Agriculture and Forestry. 40, 136-145.
Barghi, A., Gholipouri, A., 2020. Effects of jasmonic acid and 24-epi brassinolid on quantitative and qualitative yield of Nigella sativa L. under salinity stress condition. Iranian Journal of Medicinal and Aromatic Plants, 36, 837-850. [In Persian with English Summary].
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
Davies, W.J., Kudoyarova, G. and Hartung, W., 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plants response to drought. Journal of Plant Growth Regulation. 24, 285-295.
Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F.A., Khan, F., Chen, Y., Wu, C., Tabassum, M.A., Chun, M.X., Afzal, M., Jan, A., Jan, M.T., Huang, J., 2015. Potential role of phytohormones and plant growth promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research. 22, 4907-4921.
Farouk, S., Sanusi, A.B.A.J., 2019. Potent induction of wheat flowering and its related to yield components. Journal of Animal and Poultry Sciences., 19, 270-278.
Fathi, A., Tari, D.B., 2016. Effect of drought stress and its mechanism in plants. International Journal of Life Sciences. 10, 1-6.
Fazeli, A., Zarei, B., Tahmasebi, Z., 2017. The effect of salinity stress and salicylic acid on some physiological and biochemical traits of Black cumin (Nigella sativa L.). Iranian Journal of Plant Biology. 9, 69-83. [In Persian with English Summary].
Ferrat, I.I., Lovat, C.J., 1999. Relation between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit. Crop Science. 39, 467-470.
Ghamarnia, H., Jalili, Z., Daichin, S., 2012. The effects of saline irrigation water on different components of black cumin (Nigella sativa L.). International Journal of AgriScience, 2, 915-922.
Ghanem, M.E., Albacete, A., Smigocki, A.C., Frébort, I., Pospísilová, H., Martínez-Andújar, C., Acosta, M., Sánchez-Bravo, J., Lutts, S., Dodd, I.C., Pérez-Alfocea, F., 2011. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany. 62, 125-140.
Ghorbanli, M., Adib hashemi, N., Peyvandi, M., 2010. Study of salinity and ascorbic acid on some physiological responses of Nigella sativa L. Iranian Journal of Medicinal and Aromatic Plants, 26, 370-388. [In Persian with English Summary].
Gong, D.H., Wang, G.Z., Si, W.T., Zhou, Y., Liu, Z., Jia, J., 2018. Effects of salt stress on photosynthetic pigments and activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase in Kalidium foliatum. Russian Journal of Plant Physiology.65, 98-103.
Gordon, S.P., Chickarmane, V.S., Ohno, C., Meyerowitz, E.M., 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences. 106, 16529-16534.
Hazrati Yadekori, S., Tahmasebi Sarvestani, Z., 2012. Effects of different nitrogen fertilizer levels and hormone benzyl adenine (BA) on growth and ramet production of Aloe vera L. Iranian Journal of Medicinal and Aromatic Plants. 28, 210-223. [In Persian with English Summary].
He, H., Qin, J., Cheng, X., Xu, K., Teng, L., Zhang, D., 2018. Effects of exogenous 6-BA and NAA on growth and contents of medicinal ingredient of Phellodendron chinense seedlings. Saudi Journal of Biological Sciences. 25, 1189-1195.
Heidargholinezhad, F., Moradi, H., 2017. Effect of benzylaminopurine (BAP) and variety on basil regeneration. Journal of Medicinal Plants Biotechnology. 3, 30-39.
Heidari, M., Jahantighi, H., 2014. Evaluate effect of water stress and different amounts of nitrogen fertilizer on seed quality of black cumin (Nigella Sativa L.). Iranian Agricultural Research. 11, 640-647. [In Persian with English Summary].
Huang, J., Han, B., Xu, S., Zhou, M., Shen, W., 2011. Heme oxygenase-1 is involved in the cytokinin-induced alleviation of senescence in detached wheat leaves during dark incubation. Journal of Plant Physiology. 168, 768-775.
Hussein, Y., Amin, G., Azab, A., Gahin, H., 2015. Induction of drought stress resistance in sesame (Sesamum indicum L.) plant by salicylic acid and kinetin. Journal of Plant Sciences. 10, 128-141.
Kang, N.Y., Cho, C., Kim, N.Y., Kim, J., 2012. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. Journal of Plant Physiology. 169, 1382-1391.
Khalid, K.A., 2015. Seed yield, fixed oil, fatty acids and nutrient content of Nigella sativa L. cultivated under salt stress conditions. Journal of Agronomy. 14, 241-246.
Khalid, k.a., Shedeed, M.R., 2014. The effects of saline irrigation water and cobalt on growth and chemical composition in Nigella sativa. Nusantara Bioscience. 6, 146-151.
Kudoyarova, G.R., Dodd, I.C., Veselov, D.S., Rothwell, S.A., Yu. Veselov, S., 2015. Common and specific responses to availability of mineral nutrients and water. Journal of Experimental Botany. 66, 2133-2144.
Kumar, S.B.P., 2020. Salinity stress, its physiological response and mitigating effects of microbial bio inoculants and organic compounds. Journal of Pharmacognosy and Phytochemistry. 9, 1397-1303.
Kuryata, V.G., Kushnir, О.V., Kravets, О.О., 2020. Effect of 6-Benzylaminopurine on morphogenesis and production process of sweet pepper (Capsicum annuum L.). Ukrainian Journal of Ecology. 10, 1-6.
Lahijani, M.J., Kafi, M., Nezami, A., Nabati, J., Erwin, J., 2018. Effect of 6-benzylaminopurine and abscisic acid on gas exchange, biochemical traits, and minituber production of two potato cultivars (Solanum tuberosum L.). Journal of Agricultural Science and Technology. 20, 129-139.
Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., Wu, X., 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution. 6, 1-10.
Tsamaidia, D., Dafererab, D., Karapanosa, I.C., Passama, H.C., 2017. The effect of water deficiency and salinity on the growth and quality of fresh dill (Anethum graveolens L.) during autumn and spring cultivation. International Journal of Plant Production. 11, 33-46.
Hoque, M.A., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., Murata, Y., 2008. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology, 165, 813-824.
Lodhi, A., Arshad, M., Azam, F., Sajjad, M.H., Ashraf, M., 2009. Changes in mineral and mineralizable N of soil incubated at varying salinity, moisture and temperature regimes. Pakistan Journal of Botany. 41, 967-980.
Lugojan, C., Ciulca, S., 2011. Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology. 15, 173-177.
Luo, Y., Tang, Y., Zhang, X., Li, W., Chang, Y., Pang, D., Xu, X., Li, Y., Wang, Z., 2018. Interactions between cytokinin and nitrogen contribute to grain mass in wheat cultivars by regulating the flag leaf senescence process. The Crop Journal. 6, 538-551.
Lutts, S., Kinet, J.M., Bouharmont, J., 1996. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78, 389-398.
Matthaus, B., Ozcan, M.M., 2011. Fatty Acids, Tocopherol, and sterol contents of some nigella species seed oil. Czech Journal of Food Sciences. 29, 45 150.
Mikaeili, Y., Nourafcan, H., Ajalli, J., 2018. Effect of indole acetic acid and benzyl amino purine on growth indices of evening primrose. Agroecology Journal. 14, 45-55.
Molahoseini, H., Feizian, M., Davazdaemami, S., Mehdi Pour, E., 2018. Effects of silicone nano oxide coated with humic acid and salicylic acid on some morphological parameters and ionic composition of black cumin (Nigella sativa L.) under salinity stress. Iranian Journal of Medicinal and Aromatic Plants, 34, 629-644. [In Persian with English Summary].
Mostafa, O.M., Soliman, M.I., 2010. Ultrastructure alterations of adult male Schistosoma mansoni harbored in albino mice treated with Sidr honey and/or Nigella sativa oil. Journal of King Saud University-Science. 22, 111-121.
Mostafa, S.H., Brengi, A., 2018. Growth, yield and chemical composition of okra as affected by three types and levels of synthetic cytokinins under high temperature conditions. Alexandria Journal of Agricultural Sciences. 63, 365-372.
Nazarbeygi, E., Yazdi, H., Naseri, R., Soleimani, R., 2011. The effects of different levels of salinity on proline and a, b chlorophylls in canola. American Eurasian Journal of Agriculture and Environmental Science. 1, 70-74.
Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Frontiers in Plant Science. 11, 1-18.
Nikakhlagh, S., Rahim, F., Aryani, F.H.N., Syahpoush, A., Brougerdnya, M.G., Saki, N., 2011. Herbal treatment of allergic rhinitis: the use of Nigella sativa. American Journal of Otolaryngology. 32, 402-407.
Omidi, H., Sarami, R., Bostani, A.A., 2017. The effect of auxin and cytokinin on the biochemical parameters and peroxidase activity (H2O2) of stevia (Stevia rebaudiana Bertoni) under salinity stress. Journal of Soil and Plant Interactions. 8, 91-105.
Opabode, J.T., Raji I.B., 2018. Influence of Exogenous 6-Benzylaminopurine on growth, physiological parameters, proximate content and mineral element composition of pot-grown Solanecio biafrae. Advances in Crop Science and Technology. 6, 1-7.
Opabode, J.T., Owojori, S., 2018. Response of African eggplant (Solanum macrocarpon L.) to foliar application of 6-benzylaminopurine and gibberellic acid. Journal of Horticultural Research. 26, 37-45.
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., Drechsel, P., Noble, A.D., 2014. Economics of salt‐induced land degradation and restoration. Natural Resources Forum. 38, 282-295.
Rahimi, A., Shamsodin Saeed, M., Etemadi, F., 2011. Effects of salt stress on germination, growth and ion contents of Cumin (Nigella sativa L.). Arid Biome, 1, 20-30. [In Persian with English Summary].
Rahmani, V., Movahhedi Dehnavi, M., Yadavi, A. R., Balouchi, H.R., Hamidian, M., 2020. Physiological responses of black cumin (Nigella sativa L.) to calcium silicate under drought and salinity stresses with iso-osmotic potential. Plant Process and Function. 9, 77-90. [In Persian with English Summary].
Rashed, N., Shala, A., Mahmoud, M.A., 2017. Alleviation of salt stress in Nigella sativa L. by gibberellic acid and rhizobacteria. Alexandria Science Exchange Journal. 38, 785-799.
Safarnejad, A., Sadr, S.V.A. Hamidi, H., 2007. Effect of salinity stress on morphological characters of Nigella sativa. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research. 15(1), 75-84. [In Persian with English Summary].
Salek Mearaji, H., Tavakoli, A., Sepahvand, N.A., 2020. The effect of cytokinin on physiological and related traits with yield of quinoa under drought stress conditions. Journal of Crops Improvement. 22, 419-432. [In Persian with English Summary].
Sanchez-Rodriguez, E., Rubio-Wilhelmi, M., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Romero, L., Ruiz, J.M., 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science. 178, 30-40.
Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.B., 2011. Engineering cold stress tolerance in crop plants. Current Ggenomics. 12, 30-43.
Sarvajeet, S.G., Narendra, T., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48, 909-930.
Sayd, S.S., Taie, H.A., Taha, L.S., 2010. Micropropagation, antioxidant activity, total phenolics and flavonoids content of gardenia jasminoides ellis as affected by growth regulators. International Journal of Academic Research. 2, 1-8.
Talei, D., Reyhani, A., 2019. Morphophysiological responses of Nigella sativa L. to salicylic acid under salinity stress. Environmental Stresses in Crop Sciences. 12, 949-960. [In Persian with English Summary].
Wani, S.H., Kumar, V., Shriram, V., Sah, S.K., 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal., 4, 162-176.
Wang, W.Q., Liu, S.J., Song, S.Q., Møller, I.M., 2015. Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiology and Biochemistry. 86, 1–15.
Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., Schmülling, T., 2010. Root-Specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco. Plant Cell. 22, 3905-3920.
Zalabák, D., Pospíšilová, H., Šmehilová, M., Mrízová, K., Frébort, I., Galuszka, P., 2013. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnology Advances. 31, 97–117.
Zarei, B., Fazeli, A., Tahmasebi, Z., 2019. Salicylic acid in reducing effect of salinity on some growth parameters of Black cumin (Nigella sativa). Plant Process and Function. 8, 287-298. [In Persian with English Summary].
Zubo, Y.O., Yamburenko, M.V., Selivankina, S.Y., Shakirova, F.M., Avalbaev, A.M., Kudryakova, N.V., Zubkova, N.K., Liere, K., Kulaeva, O.N., Kusnetsov, V.V., Börner, T., 2008. Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiology. 148, 1082-1093.