نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، باوی، ایران

2 دانش‌آموخته مقطع دکتری گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، باوی، ایران

چکیده

دما و پتانسیل آب دو نیروی محرکه اصلی تنظیم خواب و جوانه‌زنی بذر هستند. مدل‌های هیدروترمال تایم به‌منظور کمی‌سازی پاسخ جوانه‌زنی به این دو عامل توسعه یافته‌اند. در بیشتر این مدل‌ها تنوع زمان جوانه‌زنی در میان بذرها با در نظر گرفتن یک توزیع نرمال برای مقادیر پتانسیل آب پایه (ψb(g)) و وقوع بازدارندگی گرمایی جوانه‌زنی با فرض افزایش خطی ψb(g) در دماهای بیشتر از حد بهینه توصیف شده است. در این مطالعه، از یک مدل هیدروترمال تایم جدید بر پایه توزیع گامبل برای توصیف تغییرات ψb(g) با دما و نیز مدل‌سازی اثر تنش خشکی بر تغییرات دماهای بهینه (To(g)) و بیشینه (Tm(g)) برای کسرهای مختلف جوانه‌زنی (g) کلزای خودرو استفاده شد. مقادیر ψb(g) با دما در گستره بین دمای پایه (Tb) تا Tm(g) به صورت خطی افزایش یافت، اما ثابت هیدروتایم (θH) روندی کاهشی داشت. این پاسخ باعث شد تا شکل منحنی سرعت جوانه‌زنی (GR(g)) در مقابل دما به صورت منحنی شود. هر دو آستانه بحرانی To(g) و Tm(g) متناسب با افزایش شدت تنش خشکی کاهش یافتند. مدل ضرایب θHT (ثابت هیدروترمال تایم)، Tb، ψbase(50) (میانه پتانسیل آب پایه در T=Tb)، KT (شیب تغییر ψb(g) با دما) را به ترتیب 305.50 مگاپاسکال درجه سانتی‌گراد ساعت، 6.17 درجه سانتی‌گراد، 1.375- مگاپاسکال و 0.044 مگاپاسکال بر درجه سانتی‌گراد برآورد کرد. مدل توسعه‌ داده شده در اینجا نه‌تنها برازش‌های خوبی به داده‌های جوانه‌زنی کلزای خودرو داشت، بلکه بینش مفیدی در مورد راهبردهای انطباقی این گونه برای بهینه‌سازی زمان جوانه‌زنی خود در محیط‌های مختلف دمایی و رطوبتی فراهم آورد.

کلیدواژه‌ها

موضوعات

Alvarado, V., Bradford, K.J., 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment. 25, 1061–1069.
Bakhshandeh, E., Atashi, S., Hafeznia, M., Pirdashti, H., da Silva, J.A.T., 2015. Hydrothermal time analysis of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination. Acta Physiologiae Plantarum. 37, 1738.
Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., 2013. Seeds: Physiology of Development, Germination and Dormancy, third edn. Springer, New York.
Bradford, K.J., 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science. 50, 248–260.
Derakhshan, A., Bakhshandeh, A., Siadat, S.A., Moradi-Telavat, M.R., Andarzian, S.B., 2018. Quantification of thermos-inhibition response of seed germination in different oilseed rape cultivars. Environmental Stresses in Crop Sciences. 11, 459–469. [In Persian with English Summary]
Derakhshan, A., Moradi-Telavat, M.R., Siadat, S.A., 2016. Hydrotime analysis of Melilotus officinalis, Sinapis arvensis and Hordeum vulgare seed germination. Iranian Journal of Plant Protection. 30, 518–532. [In Persian with English Summary]
Derakhshan, A., Gherekhloo, J., 2015. Comparison of hydrothermal time models to seed germination modeling of Phalaris minor on the basis of Normal, Weibull and Gumbel distributions. Journal of Plant Production Research. 22, 39–57. [In Persian with English Summary]
Grundy, A.C., Phelps, K., Reader, R.J., Burston, S., 2000. Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytologist. 148, 433-444.
Gummerson, R.J., 1986. The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany. 37, 729–741.
Kebreab, E., Murdoch, A.J., 1999. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany. 50, 655–664.
Larsen, S.U., Bailly, C., Côme, D., Corbineau, F., 2004. Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Science Research. 14, 35–50.
Lawson, A.N., Van Acker, R.C., Friesen L.F., 2006. Emergence timing of volunteer canola in spring wheat fields in Manitoba. Weed Science. 54, 873–882.
Simard, M., Légère, A., Pageau, D., Lajeunesse, J., Warwick, S., 2002. The frequency and persistence of volunteer canola (Brassica napus) in Québec cropping systems. Weed Technology. 16, 433–439.
Mesgaran, M.B., Mashhadi, H.R., Alizadeh, H., Hunt, J., Young, K.R., Cousens, R.D., 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research. 53, 89–101.
Mesgaran, M.B., Onofri, A., Mashhadi, H.R., Cousens, R.D., 2017. Water availability shifts the optimal temperatures for seed germination: A modelling approach. Ecological Modelling. 351, 87–95.
Meyer, S.E., Debaene-Gill, S.B., Allen, P.S., 2000. Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides. Seed Science Research. 10, 213–223.
Michel, B.E., Kaufmann, M.R., 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51, 914–916.
Orozco Segovia, A., González Zertuche, L., Mendoza, A., Orozco, S., 1996. A mathematical model that uses Gaussian distribution to analyze the germination of Manfreda brachystachya (Agavaceae) in a thermogradient. Physiologia Plantarum. 98, 431-438.
Rowse, H.R., Finch-Savage, W.E., 2003. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist. 158, 101–108.
Watt, M., Bloomberg, M., 2012. Key features of the seed germination response to high temperatures. New Phytologist. 196, 332–336.
Watt, M.S., Xub, V., Bloomberg, M., 2010. Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling. 221, 1267–1272.