پاسخ بیوشیمیایی و فیزیولوژیکی گیاه کینوا به کاربرد سطوح مختلف نیتروژن و شوری آب آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز

3 دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز

چکیده

به منظور بررسی اثرات کاربرد نیتروژن و آبیاری با زهاب مزارع نیشکر بر عملکرد دانه و ویژگی های فیزیولوژیک و بیوشیمیایی گیاه کینوا (رقم گیزاوان) شامل محتوای نسبی آب برگ، شاخص کلروفیل، فعالیت آنزیم های کاتالاز، سوپراکسیددیسموتاز، غلظت پرولین و عملکرد دانه آزمایشی مزرعه‌ای در سال زراعی 98-1397 به صورت کرتهای خرد شده در قالب طرح بلوک های کامل تصادفی در سه تکرار اجرا گردید. در این آزمایش چهار سطح کود نیتروژن (صفر، 75، 150، 225 کیلوگرم در هکتار) از منبع کود اوره به عنوان فاکتور اصلی و سه سطح آب آبیاری شامل شاهد (آب کارون با میانگین شوری 2.5 دسی زیمنس بر متر) و آبیاری یک در میان (کارون – زهاب نیشکر) و آبیاری با زهاب نیشکر (با میانگین شوری 7.5 دسی زیمنس بر متر) به عنوان فاکتور فرعی در نظر گرفته شد. نتایج تحقیق نشان داد شوری باعث کاهش معنی دار محتوای نسبی آب برگ، شاخص کلروفیل، عملکرد دانه و عملکرد بیولوژیکی و افزایش معنی دار فعالیت آنزیم های آنتی اکسیدان و نیز مقدار پرولین گردید. اما نیتروژن باعث افزایش معنی دار این صفات شد. تیمار 150 کیلوگرم نیتروژن در هکتار همراه با آبیاری یک در میان باعث حداکثر مقدار شاخص کلروفیل (44.81) و عملکرد دانه (2546 کیلوگرم در هکتار) گردید و بیشترین عملکرد بیولوژیکی گیاه (7468 کیلوگرم در هکتار) در تیمار 225 کیلوگرم نیتروژن در هکتار و آبیاری یک در میان مشاهده شد. بیشترین مقدار پرولین مربوط به تیمار 225 کیلوگرم کود اوره در هکتار با آبیاری زهاب (0.95 میلی‌گرم بر گرم وزن تر گیاهی) بود. نتایج این مطالعه تائیدی است بر این فرضیه، که با مصرف کود نیتروژن کافی می توان تا حدی از بروز اثرات زیان بار شوری بر گیاه کم نمود.

کلیدواژه‌ها

موضوعات


Abdelgadir, E.M., Fadul, E.M., Fageer, E.A., Ali, E.A., 2010. Response of wheat to nitrogen fertilizer at reclaimed high terrace salt-affected soils in Sudan. Journal of Agriculture and  Social Sciences. 6, 43-47.
Abdelgawad, G., Arslan, A., Gaihbe, A., Kadouri, F., 2005. The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria (1999–2002). Agricultural Water Management. 78, 39-53.
Aebi, H., 1984. Catalase in vitro. Methods Enzymol. 105, 121-126. [In Persian].
Adolf, V.I., Shabala, S., Andersen, M.N., Razzaghi, F., Jacobsen, S.E., 2012. Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil. 357, 117–129.
Aguilar, P.C., Cutipa, Z., Machaca, E., Lopez, M., Jacobsen, S.E., 2003. Variation of proline content of quinoa (Chenopodium quinoa Willd.) in high beds (Waru Waru). Food Reviews International. 19, 121–127. doi:10.1081/FRI-120018878
Algosaibi, A.M., El-Garawany, M.M., Badran, A.E., Almadini, A.M., 2015. Effect of irrigation water salinity on the growth of Quinoa plant seedlings. Journal of Agricultural Science. 7, 205.
Amjad, M., Akhtar, J., Haq, M.A., Riaz, M.A., Jacobsen, S.E., 2014. Understanding salt tolerance mechanism in wheat genotypes by exploring antioxidant enzymes activity. Pakistan Journal Agricultural Sciences. 51, 1–8.
Amjad, M., Akhtar, S.S., Yang, A., Akhtar, J., Jacobsen, S.E., 2015. Antioxidative response of quinoa exposed to iso osmotic, ionic and non ionic salt stress. Journal of Agronomy and Crop Science. 201, 452-460.
Anderson, D., Bullock, D., Johnson, G., Taets, C., 1993. Evaluation of the minolta SPAD-502 chlorophyll meter for on farms N management of corn in lllinois. Jouranl of Plant Nutriation. 21, 741-755.
Arduini, I., Masoni, A., Ercoli, L., Mariotti, M., 2006. Grain yield and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy. 25, 309-318.
Ashraf, M., 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers.Biotechnolology Advances. 27, 84-93.
Ashraf, M., Harris, P.J.C., 2004. Potential biochemical indicators on salinity tolerance in plants. Plant Science. 166, 3-16.
Athar, H., Khan, A., Ashraf, M., 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany. 63, 224-231.
Awadalla, A., Morsy, A.S., 2017. Influence of planting dates and nitrogen fertilization on the performance of quinoa genotypes under Toshka conditions. Egyptian Journal of Agronomy. 39, 27-40.
Basra, S.M.A., Iqbal, S., Afzal, I., 2014. Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. International Journal of Agriculture and Biology. 16.
Bates, L., 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205- 207.
Bhargava, A., Shukla, S., Ohri, D., 2006. Chenopodium quinoa an Indian perspective. Industrial Crops and Products. 23, 73-87.
Bose, J., Rodrigo-Moreno, A., Shabala, S., 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany. 65, 1241–1257. https://doi.org/10.1093/jxb/ert430.
Borzui, A., Enough, M., Mousavi, M., Shalmani, A., Khorasani, A.S., 2012. Effect of Salinity and Nitrogen Fertilizer on Yield and Efficiency of Wheat Fertilizer Using Stable Isotope 15N. Journal of Water Research in Agriculture. 26, 501-517.
Chen, Z., Cuin, T.A., Zhou, M., Twomey, A., Naidu, B.P., Shabala, S., 2007. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany. 58, 4245–4255. doi:10.1093/jxb/erm284
Demiral, T., Turkan, I., 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany. 53, 247-257
Erley, G.S.A., Kaul, H., Kruse, M., Aufhammer, W., 2005. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy. 22, 95-100.
Flowers, T.J., Colmer, T.D., 2008. Salinity tolerance in halophytes. New Phytologist. 179, 945-963.
Fredeen, A.L., Gamon, J.A., Field, C.B., 1991. Responses of photosynthesis and carbohydrate‐partitioning to limitations in nitrogen and water availability in field‐grown sunflower. Plant Cell and Environment. 14, 963-970.
Gomaa, E.F., 2013. Effect of nitrogen, phosphorus and biofertilizers on quinoa plant. Journal of Applied Sciences Research. 9, 5210-5222.
Hanafy, A.H., Gad-Mervat, M.A., Hassam, H.M., Amin-Mona, A., 2002. Improving growth and chemical composition of Myrtus communis grown under soil salinity conditions by polyamines foliar application. Proceedings of the Minia. 1st Conference Agriculture Environment Science Minia, March 25-28. Egypt, 1697-1720. [In Persian with English summary]
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., Shabala, S., 2010. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany. 62, 185-193.
Hasanuzzaman, M., Nahar, K., Fujita, M., 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz M.M, PrasadMNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York. 3, 25–87. [In Persian with English summary]
Hosini, Y., Homaee, M., Karimian, N., Sadat, S. , 2009. Modeling of Canola response to combined salinity and nitrogen stresses. Journal of Science and Technology of Agriculture and Natural Resources. 12, 721-735. [In Persian with English summary]
Ismail, H., Maksimovic, J.D., Maksimovic, V., Shabala, L., Zivanovic, B.D., Tian, Y., Shabala, S., 2016. Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Functional Plant Biology. 43, 75–86. https://doi.org/10.1071/ FP15312
Iqbal, S., Basra, S.M.A., Afzal, I., Wahid, A., 2017. Exploring potential of well adapted quinoa lines for salt tolerance. International Journal of Agriculture And Biology.19, 933–940. [CrossRef]
Jacobsen, S.E., Mujica, A., Jensen, C.R., 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International. 19, 99-109.
Jacobsen, S.E., Liu, F., Jensen, C.R., 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd). Scientia Horticulturae. 122, 281–287. doi:10.1016/ j.scienta.2009.05.019
Jacobsen, S.E., 2015. “Adaptation and scope for quinoa in northern latitudes of Europe,” in State of the Art Report on Quinoa Around the World in 2013, eds Bazile D., Bertero H. D., Nieto C., editors. (Roma: FAO and CIRAD;), 436–446. [Google Scholar].
Jacoby, B., 1999. Mechanisms involved in salt tolerance of plants. PP. 97-123. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress, Marcel Dekker Inc., New York.
Jamil, M., Rehman, S., Rha, E.S., 2007. Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pakistan Journal of Botany. 39, 753-760.
Jianga, J., Huo, Z., Feng, Sh., Zhang, CH., 2012. Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Research. 8, 12-21.
Joseph, E.A., Radhakrishnam, V., Mohanan, K. V., 2015. A Study on the accumulation of proline-an osmoprotectant amino acid under salt stress in some native rice cultivars of North Kerala. India. Universal Journal of Agricultural Research. 3, 15-22.
Kakabouki, I., Bilalis, D., Karkanis, A., Zervas, G., Hela, D., 2014. Effects of fertilization and tillage system on growth and crude protein content of quinoa (Chenopodium quinoa Willd.): An alternative forage crop. Emirates Journal of Food and Agriculture.5, 18-24.
Karimi, M., 2020. Interactive effects of irrigation water salinity and urea fertilizer on wheat (Triticum aestivum L.) yield and yield components. Environmental Stresses in Crop Sciences. 13, 937-951. [In Persian with English summary]
Khuzestan Water and Power Authoriy Company (Kwpa)., 2011. Khuzestan province drainage management studies report. [In Persian with English summary]
Koyro, H.W., Eisa, S.S., 2008. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa willd. Plant and Soil. 302, 79-90.
Koca, H., Bor, M., Özdemir, F., Turkan, I., 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany. 60, 344-351.
Killi, D., Haworth, M., 2017. Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress. Plants. 6, 49-58.
Logan, B.A., Demmig-Adams, B., Rosenstiel, T.N., Adams, W.W., 1999. Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta. 299, 213–220.
Malakooti, M.J., Homayi, M., 2004. Fertility of Arid and Semi-arid Soils. Tarbiat Modares University Press. Tehran. 500p. [In Persian].
Majd, F., Ardakani, M.R., 2003. Nuclear Techniques in Agricultural Sciences. Tehran University Press. 360p. [In Persian]
Marenco, R.A., Antezana-Vera, S.A., Nascimento, H.C.S., 2009. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica. 47, 184-190.
Mittler, R., Vanderauwera, S., Gollery, M., Breusegem, F.V., 2002. Reactive oxygen gene network of plants. Trends in Plant Science. 9, 490-498.
Munns, R., 2010. Plant water content. In: PrometheusWiki,Ver.1, ttp://www.publish. csiro.au/prometheuswiki,accessed: 17.05.10.
Muscolo, A., Panuccio, M.R., Gioffre, A.M., Jacobsen, S.E., 2016. Drought and salinity differently affect growth andsecondary metabolites of “Chenopodium quinoa Willd” seedlings. In Halophytes for Food Security in Dry Lands. 2, 41-49.
Nazar, R., Iqbal, N., Syeed, S., Khan, N.A., 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism. Journal of Plant Physiology. 168, 807-815.
Ozgur, R., Uzilday, B., Sekmen, A.H., Turkan, I., 2013. Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology. 40, 832–847.
Panuccio, M. R., Jacobsen, S.E., Akhtar, S.S., Muscolo, A., 2014. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants. 6. Doi: 10.1093/aobpla/plu047.
Pavlik, M., Pavlikova, D., Balik, J., Neuberg, M., 2010. The contents of amino acids and sterols in maize plants growing under different nitrogen conditions. Plant Soil and Environment. 56, 125-132.
Rahnama, A., James, R.A., Poustini, K., Munns, R., 2010. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology. 37, 255–269. [In Persian with English summary]
Ravikovitch, S., Porath, A., 1967. The effect of nutrients on the salt tolerance of crops. Plant and Soil. 26, 49-71.
Razzaghi, F., Plauborg, F., Jacobsen, S.E., Jensen, C.R., Andersen, M.N., 2012. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agriculture Water Management. 109, 20–29.
Ruffino, A.M.C., Rosa, M., Hilal, M., Gonzalez, J.A., Prado, F.E., 2010. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant and Soil. 326, 213–224.doi:10.1007/s11104-009-9999-8
Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A.K., Lizardi, S., Covarrubias, A., Martínez, E.A., Molina-Montenegro, M.A., Biondi, S., Zurita-Silva, A., 2011. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry. 49, 1333–1341.
Sairam, R.K., Rao, K.V., Srivastava, G.C., 2002. Differential response of wheat genotypes to long-term salinity stress in relationto axidative stress. Antioxidant active and osmolyte consentration. Plant Science. 163, 1037-1046.
Sadat Noori, S.A., Ferdosizadeh, L., Izadi-Darbandi, A., Mortazavian, S.M.M., Saghafi, S., 2011. Effects of salinity and laser radiation on proline accumulation in seeds of spring wheat. Journal of Plant Physiology and Breeding. 5, 45-51. [In Persian with English summary]
Sade, N., Gebremedhin, A., Moshelion, M., 2012. Risk-taking plants: Anisohydric behavior as a stress-resistance trait. Plant Signaling and Behavior. 7, 767-770.
Saleem, M.A., Basra, S.M.A., Afzal, I., Iqbal, S., Sohail, S., Naz, S., 2017. Exploring the potential of quinoa accessions for salt tolerance in soilless culture. International Journal Agriculture Biology. 19, 233–240.
Sairam, R.K., Srivastava, G.C., 2002. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science. 162, 897-904.
Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S., Fujita, K., 2004. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environment and Experiemental Botany. 52, 131-138.
Sanchez, H.B., Lemeur, R., Damme, P.V., Jacobsen, S.E., 2003. Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd). Food Reviews International. 19, 111-119.
Shabala, S., Hariadi, Y., Jacobsen, S.E., 2013. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na(+) loading and stomatal density. Journal of Plant Physiology. 170, 906-914.
Siddiqui, M.H., Mohammad, F., Al-Waibi, M.H., Bahkali, A.H., 2010. Nitrogen in relation to photosynthetic capacity and accumulation of osmoprotectant and nutrients in Brassica genotype grown under salt stress. Agricultural Science in China. 9, 671-680.
Soraei-tabrizi, M., 2014. Modeling plant water uptake under conditions of simultaneous stresses of water, salinity and nitrogen. (Doctoral dissertation, Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Islamic Azad University, Science and Research Branch, Tehran). [In Persian with English summary]
Veraplakorn, V., Nanakorn, M., Kaveeta, L., Suwanwong, S., Bennett, I.J., 2013. Variation in ion accumulation as a measure of salt tolerance in seedling and callus of Stylosanthes guianensis. Theoretical and Experimental Plant Physiology. 25, 106-115.
Waqas, M., Yaning, C., Iqbal, H., Shareef, M., Rehman, H., Yang, Y., 2017. Paclobutrazol improves salt tolerance in quinoa: Beyond the stomatal and biochemical interventions. Journal of Agronomy and Crop Science. 203, 315–322. https://doi.org/10.1111/jac.12217
Zangani, A., Kashani, A., Fathi, G.H., Meskarbashi, M., 2007. Effect of different nitrogen levels on yield andyield components of two cultivars of rapeseed quantity and quality in Ahwaz. Journal of Agriculture Sciences. 25, 39-45. [In Persian with English summary]
دوره 15، شماره 2
سیاست دسترسی آزاد
تیر 1401
صفحه 501-515
  • تاریخ دریافت: 09 آبان 1399
  • تاریخ بازنگری: 20 دی 1399
  • تاریخ پذیرش: 29 دی 1399
  • تاریخ اولین انتشار: 19 اردیبهشت 1401