نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه اصلاح نباتات، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استاد، گروه اصلاح نباتات، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استاد، گروه اصلاح نباتات، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی رازی کرمانشاه

4 دانشیار، گروه اصلاح نباتات، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

به منظور تعیین پایداری عملکرد دانه ژنوتیپ‌‌‌های گندم نان، آزمایشی با استفاده از 23 ژنوتیپ گندم نان به همراه دو رقم شاهد با استفاده از طرح بلوک‌‌‌های کامل تصادفی با سه تکرار و در دو محیط آبی (بدون تنش) و دیم (تنش) جمعا (شش محیط) در مزرعه تحقیقاتی و آزمایشگاه‌‌‌های گروه زراعت و اصلاح نباتات پردیس کشاورزی و منابع طبیعی دانشگاه رازی کرمانشاه به مدت سه سال زراعی (95، 96 و 97) اجرا شد. نتایج تجزیه واریانس مرکب نشان داد که بین مکان ها، سال ها، ژنوتیپ ها، اثرات متقابل سال × مکان، سال× ژنوتیپ، مکان × ژنوتیپ، سال × مکان × ژنوتیپ اختلاف معنی داری در سطح احتمال آماری 1% وجود داشت. بنابراین نتایج حاصل بیانگر این مطلب بود که ژنوتیپ های گندم مورد مطالعه در محیط های مورد بررسی واکنش های متفاوتی از خود نشان داده اند. از روش‌‌‌های ناپارامتری برای ژنوتیپ‌‌‌های پایدار استفاده شد. بر اساس معیارهای Si(1) و Si(2) ژنوتیپ‌‌‌های Pishtaaz و Wc-4592 به عنوان پایدارترین ژنوتیپ ها معرفی شدند. همچنین معیارهای Si(3) و Si(6) ژنوتیپ‌‌‌های Pishgam، Wc-5001 و Pishtaaz را به عنوان پایدارترین ژنوتیپ ها معرفی نمودند. بر اساس معیارهای ناپارامتری NPi(1)، NPi(2)، NPi(3) و NPi(4) ژنوتیپ‌‌‌های Pishgam و Pishtaaz به عنوان پایدارترین ژنوتیپ ها انتخاب شدند. همچنین جهت بررسی اثر متقابل ژنوتیپ×محیط و شناسایی پایدارین ژنوتیپ ها از روش GGE biplot استفاده شد. بررسی همزمان پایداری و عملکرد ژنوتیپ ها با استفاده از بای پلات مختصات محیط متوسط (AEC) نشان دادکه ژنوتیپ‌‌‌های، Wc-5001، Wc-4840 و Wc-4582 به همراه دو رقم شاهد Pishtaaz و Pishgam علاوه بر عملکرد بالا دارای پایداری عملکرد بیشتری بودند. هم چنین این ژنوتیپ ها دارای نزدیک ترین فاصله نسبت به ژنوتیپ‌‌‌های ایده آل بودند.

کلیدواژه‌ها

موضوعات

Ahmadi, J., Mohammadi, A., Najafi Mirak, T., 2012. Targeting promising bread Wheat (Triticum aestivum L.) lines for cold climate growing environments using AMMI and SREG GGE biplot analyses. Journal of Agricultural Science and Technology (JAST). 14(3), 645-657.
Amiri Oghan, H., Zeinalzadeh-Tabrizi, H., Fanaei, H. R., Kazerani, N. KH., Ghodrati, Gh. R., Danaie, M. B., 2019. Stability study of seed yield in promising lines of spring oilseed rape in Southern- worm regions of Iran. Journal of Crop Breeding. 11, 42-54 [In Persian with English summary].
Abdulahi, A., Mohammadi, R., Pourdad, S., 2007. Evaluation of safflower (Carthamus spp.) genotypes in multi-environment trials by nonparametric methods. Asian Journal of Plant Science. 6, 827-832.
Aghaee-Sarbarzeh, M., Bahari, M., Farzadi, B., Andarzian, M., Dastfal, T., NajafiMirak, T., 2014. Evaluation of grain yield and its stability in durum wheat genotypes in warm and dry areas of Iran. Iranian Journal of Crop Sciences, 16, 1-11. [In Persian with English summary].
Akmal, C., Gunarsih, M., Samaullah, M.Y., 2014. Adaptation and stability of aromatic rice lines in North Sumatera. Food Crop Research Journal. 33(1), 9-16.
 Farshadfar, E., Poursiahbidi, M., Jasemi, M., 2012. Evaluation of phenotypic stability in bread wheat genotypes using GGE-biplot. International Journal of Agriculture and Crop Sciences. 4(13), 904-910.
Fasahat, P., Mohammad, K., Abdullah, A., Rahman, B.M.A., Siing, N. M., Gauch, J.H.G., Ratnam, W., 2014. Genotype × Environment assessment for Grain quality traits in Rice. Communications in Biometry and Crop Science. 9(2), 71 - 82.
Fernandez, G.C.J., 1991. Analysis of Genotype Environment interaction by Stability estimates. Horticultural Sciences. 27, 947-950.
Flores, F., Moreno, M.T., Cubero, J. I., 1998. A comparison of univariate and multivariate methods to analyze G×E interaction. Field Crop Research. 56, 271-286.
Gabriel, K.R., 1971. The biplot Graphic display of matrices with application to principal component analysis. Biometrika. 58, 453-467.
Karakus, M., Yildirim, U.A., 2019. GGE biplot analysis of genotype×environment interaction in soybean grown as asecond crop. Turkish Journal of Field Crops. 24, 145-154
Kaya, Y., Taner, S., 2003. Estimating genotypic ranks by nonparametric stability analysis in bread Wheat (Triticum aestivum L.). Journal of Central European Agriculture. 4, 47-53.
Mostafsvi, A., Mohammadi, R., 2018. Evaluation of yield stability of winter barley varieties (Hordeum vulgare L.) using additive main effects and multiplicative interaction method. Journal of Crop Production. 11(2), 185-195 [In Persian with English summary].
Makumbi, D., Diallo, A., Kanampiu, K., Mugo, S., Karaya, H., 2015. Agronomic performance and genotype × environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Science. 55, 540-555.
Mohammadi, R., Armion, M., Sadeghzadeh, B., Golkari, S., Khalilzadeh, Gh., Ahmadi, H., Abedi-Asland, Gh., Eskandari, M., 2016. Assessment of grain yield Stability and adaptability of rainfed Durum Wheat breeding lines. Applied Field Crops Research. 29, 25-42. [In Persian with English summary].
Mohammadi, R., Amri, A., 2013. Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica 192, 227–249.
Moslemi, M., Roustaii, V., Rashidi, V., 2012. Evaluation of grain yield and yield components in bread Wheat Genotypes under different moisture regimes. Seed Plant Improvement Journal. 28, 611–630. [In Persian with English summary].
Nassar, R., Huhn, M., 1987. Studies on Estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics. 43, 45-53.
Omrani, S., Naji, A.M., Esmaeil Zadeh Moghadam, M., 2017. Yield stability analysis of promising bread wheat lines in southern warm and dry agro-climatic zone of Iran using GGE biplot model. Journal of Crop Breeding. 9,157-165. [In Persian with English summary].
Pourdad, S., Jamshid-Mogaddam, S.M., 2013. Study on Genotype × Environment Interaction through GGE Biplot for seed yield in Spring rapeseed (Brassica Napus L.) in rainfed condition. Journal of Crop Breeding. 12, 1- 14 [In Persian with English summary].
Ramos, J.E.U., Brogin, R.L., Godinho, V.P.C., Botelho, F.J.E., Tardin, V., Teodoro, P.E., 2017. Identification of soybean genotypes with high stability for the Brazilian macro-region 402 via biplot analysis. Genetics and Molecular Research. 16, 1-10.
Saremi Rad, A., Mostafavi, Kh., Mohammadi, A., 2015. Genotype-environment interaction study base GGE biplot method for kernel yield in sunflower (Helianthus annus L.) cultivars. Journal of Crop Breeding. 12(34), 43-53. [In Persian with English summary].
Sattari, A., Solouki, M., Bagheri, N., Fakheri, B., Nabipour, A., 2019. Analysis of genotype, environment interaction and grain yield stability of rice (Oryza sativa L.) genotypes in Mazandaran province. Journal of Crop Breeding. 11, 1-10. [In Persian with English summary].
Sharma, R.C., Morgounov, A.I., Braun, H.J., Akin, B., Kese, M., Bedoshvili, D., Bagci, C., Ginkel, M., 2010. Identifying high yielding stable winter wheat genotypes for irrigated environments in central and west Asia. Euphytica. 171, 53-64.
Thennarasu, K., 1995. On certain non-parametric procedures for studying genotype environment interactions and yield stability. Ph.D. Thesis, P. J. School, IARI, New Delhi, India.
Yan, W., 2001. GGE biplot-widow’s application for graphical analysis of Multi Environment trial data and other types of two-way data. Agronomy Journal. 93, 1111–1118.
Yan, W., Hunt, L.A., Sheng, Q., Szlavincs, Z., 2003. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science. 40(3), 597-605.
Yan, W., Kang, M.S., 2003. GGE biplot analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. CRC Press, Boca Raton, FL, USA.
Yan, W., Kang, M.S., Woods, B., Ma. S., Cornelius, P L., 2007. GGE biplot vs. AMMI analysis of Genotypeby Environment data. Crop Sci. 47, 643 - 653.
Yan, W., Pageau, D., Frégeau-Reid J.A., Durand, J., 2011. Assessing the representativeness and repeatability of test locations for genotype Evaluation. Crop Science. 51, 1603–1610.