نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد علوم و تکنولوژی بذر دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

2 دانشیار گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

3 دانشجوی دکتری زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

چکیده

به‌منظور بررسی اثر تنش خشکی بر جوانه‌زنی بذر ژنوتیپ‌های مختلف کینوا (Chenopodium quinoa Willd) آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار در آزمایشگاه بذر دانشگاه علوم کشاورزی و منابع طبیعی گرگان در سال 1398 طراحی و انجام شد. در این مطالعه پاسخ جوانه‌زنی بذرهای ژنوتیپ‌های مختلف کینوا (تی‌تی‌کاکا، ردکارینا، جی زا1، کیو12، کیو21، کیو22، کیو26، کیو29 و کیو 31) به خشکی (صفر، 0.4-، 0.8-، 1.2- و 1.6- مگاپاسکال) با استفاده از مدل هیدروتایم کمی‎سازی شد. نتایج نشان داد که همه ژنوتیپ ها تا پتانسیل 0.4- مگاپاسکال دارای جوانه‌زنی بالایی بودند و به‌طور میانگین درصد جوانه‌زنی آن‌ها بالای 90 درصد بود؛ اما با منفی‌تر شدن پتانسیل آب، اختلاف بین ژنوتیپ‌ها ازلحاظ درصد جوانه‌زنی افزایش یافت. بر اساس مدل هیدروتایم بین ژنوتیپ‌های مختلف کینوا ازنظر پتانسیل آب ‌پایه برای 50 درصد جوانه‌زنی (ψb50)، ضریب هیدروتایم (θH) و یکنواختی جوانه‌زنی (σψb) اختلاف معنی‌داری وجود داشت. مقدار عددی پارامتر ψb50 از 1.62- در ژنوتیپ رد کارینا تا 1.97- در ژنوتیپ کیو29 در نوسان بود. این امر نشان می‌دهد که این گیاه در مرحله جوانه‌زنی به خشکی متحمل است. کمترین و بیشترین ضریب هیدروتایم در ژنوتیپ‌های ردکارینا و کیو29 به ترتیب با 17.09 و 25.07 مگاپاسکال در ساعت (با میانگین 21.36 مگاپاسکال در ساعت) و کمترین یکنواختی جوانه‌زنی نیز در ژنوتیپ کیو29 (0.41 مگاپاسکال) و بیشترین آن در ژنوتیپ کیو12 (0.23 مگاپاسکال) مشاهده شد. به‌طورکلی نتایج این تحقیق نشان داد که بذرهای این گیاه سرعت جوانه‌زنی بالایی داشته و از تحمل بالایی به تنش خشکی در مرحله جوانه‌زنی برخوردارند؛ این امر شانس استقرار سریع‌تر کینوا در شرایط کمبود آب را افزایش می‌دهد. همچنین توانایی تحمل به خشکی در مرحله جوانه‌زنی کینوا، نیاز به مصرف آب در این مرحله را کمتر می‌کند که این امر می‌تواند در تدوین برنامه‌های مدیریتی که منجر به افزایش کارایی مصرف آب می‌شود، بسیار مفید و کاربردی باشد.

کلیدواژه‌ها

موضوعات

Adeli, R., Soltani, A., Akbari, Gh.A., Ramshini, R., 2017. Assessment of seed germination on the response to water potential in different canola genotypes using hydrotime model. Journal of Crops Improvement. 19, 921-932. [In Persian with English Summary].
Alimagham, S.M., Ghadri-Far, F., 2015. Hydrotime model: Introduction and application of this model in seed researches. Environmental Stresses in Crop Sciences. 7, 41-52.
Alizadeh, P., Kamkar, B., Shattai, Sh., Kazemi, H., 2019. Spatial and temporal monitoring of agricultural drought in wheat cultivated lands using standardized precipitation index (Case study west of Golestan province). Agricultural Ecology. 3, 1084-1069. [In Persian with English Summary].
Bazile, D., Baudron, F., 2015. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: Bazile D.. Bertero. H.D.. Nieto. C. (eds.). State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, p. 42-55.
Bradford, K.J., Still, D.W., 2004. Applications of hydrotime analysis in seed testing. Seed Technology. 26, 75-85.
Chegni, H., Goldani, M., Shiranirad, A.H., Kafi, M., 2015. Effects of terminal drought stress on some biochemical and agronomic characteristics in some rapeseed lines (Brassica napus L.). Journal of Plant Ecophysiology. 8, 29-41. [In Persian with English Summary].
Derakhshan, A., Gharineh, M.H., 2015. Application of hydrotime concept to predict seedling emergence of spring barley varieties in field. Iranian Journal of Seed Science and Research. 2, 1-14. [In Persian with English Summary].
Eslampour, F., Gharineh, M.H., Fathi, Gh.A., Derakhshan, A., 2014. Hydrotime modeling of seeds (Carthamus tinctorius L.) using Weibull, distribution. 13th Iranian Crop Science Congress. Seed and Plant Improvement institute. Karaj. Iran. 
Furuya, J., Koyama, O., 2005. Impacts of climatic change on world agricultural product markets: estimation of macro yield functions. Japan Agricultural Research Quarterly. 39, 121-134.
Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., Taboada, C., 2008. Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy. 28 (3), 427-436.
Ghaderifar, F., Soltani, A., Sadeghipour, H., 2009. Evaluation of nonlinear regression models for quantification of paper seed germination (Cucurbita pepo L.) subsp. Pepo. Convar. Pepo var. Styriaca Greb), Brago (Borago officinalis L.) and Black Seed (Nigella sativa L.) to temperature. Journal of Plant Production Research. 4, 1-19.  [In Persian with English Summary].
Hamidi, S., 2020. Effects of environmental conditions on germination and emergence of different genotype of Quinoa. MSc. Thesis in Seed Science and Technology. Gorgan University of Agricultural Sciences and Natural Resources. [In Persian with English Summary].
Hendrix, S.D., 1984. Variation in seed weight and its effects on germination in Pastinaca sativa L. (Umbelliferae). American Journal of Botany. 71, 795-802.
Jamali, M., Ghaderifar, F., Sadeghipour, H.R., Soltani, A., Alimagham, S.M., 2016. Evaluation of germination of wheat seeds with different levels of seed strength using hydrotime model. Environmental Stresses in Crop Sciences. 10, 403-413.  [In Persian with English Summary].
Jensen, C.R., Jacobsen, S.E., Andersen, M.N., Nu´nez, N., Andersen, S.D., ´ Rasmussen, L., Mogensen, V.O., 2000. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. European Journal of Agronomy. 13, 11–25.
Keshavarz, M., 2019. Addressing compatibility of the farm management strategies with climate change: the case of fars province. Iran Agricultural Extension and Education Journal. 14, 107-123. [In Persian with English Summary].
Kiani Ghalehsard, S., Shahraki, J., Akbari, A., Sardar Shahrak, A., 2019. Impact of climate change on agricultural water use and water reserves of Iran. Irrigation and Water Engineering. 10, 109-120. [In Persian with English Summary].
Larsen, S.T.L., 2009. Lack of fresh water throughout the world. Evergreen State College.
Mamedi, A., Tavakkol Afshar, R., Sepahvand, N. A., 2017. Quantifying seed germination response of quinoa (Chenopodium quinoa Willd) under temperature and drought stress regimes. Iranian Journal of Field Crop Science. 48 (3), 615-623.
Michel, B.E., Kaufmann, M.R., 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51, 914-916.
Mirfazeli, M.S., Akbari, G.A., Ramshini, H.A., 2019. Evaluation of seedling emergence of basil (Ocimum basilicum L.) accessions under salinity and drought stresses. Environmental Stresses in Crop Science. 12 (2), 567-578.
Momeni, A., 2016. An overview on the development potentials of aerobic rice cultivation in crisis conditions in Iran. Iranian Journal of Crop Sciences.18, 179-195. [In Persian with English Summary].
Moradi, R.A., Alizadeh, Y., Nezami, A., Eshghizadeh, H.R., 2013. The effect of seed size under drought stress conditions on germination and seedling growth characteristics of lentil (Lens culinaris Medik.). Iranian Journal of Field Crops Research. 11, 377-389. [In Persian with English Summary].
Nasehi, A., 2002. Population forecast of Iran until 1400 AH. 2002. The first chapter of the final report of the food security plan. Department of Agricultural Sciences, Academy of Sciences of the Islamic Republic of Iran. Pages, 1-7.
Ostadian Bidgoly, R., Balouchi, H.R., Soltani, E., Moradi, A., 2018. Effect of temperature and water potential on Carthamus tinctorius L. seed germination: Quantification of the cardinal temperatures and modeling using hydrothermal time. Industrial Crops and Products. 113, 121–127.
Passioura, J., 2006. Increasing crop productivity when water is scarce from breeding to field management. Agricultural Water Management. 80, 176-196.
‏Pereira, W.A., Pereira, S.M.A., Dias, D.C.F.D.S., 2013. Influence of seed size and water restriction on germination of soybean seeds and on early development of seedlings. Journal of Seed Science. 35, 316-322.‏
Rabbani Mohammadi, R., Ghaderifar, F., Soltani, F., Sadeghipour, H., 2014. Application of hydrotime model in predicting emergence of wheat seed shipments. Journal of Crop Production. 17, 1-16.  [In Persian with English Summary].
Ray, D.K., West, P.C., Clark, M., Gerber, J.S., Prishchepov, A.V., Chatterjee, S., 2019. Climate change has likely already affected global food production. PLoS ONE. 14, e0217148.
Saux, M., Bleys, B., André, T.,  Bailly, C., El-Maarouf-Bouteau, H., 2020. A correlative study of sunflower seed vigor components as related to genetic background. Plants. 9, 386.
Shafii, B., Price, W.J., 2001. Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological and Environmental Statistics. 6, 356–366.
Shirazi, E., Fazeli-nasab, B., Ramshin, H.A., Fazel-Najaf-Abadi, M., Izadi-darbandi, A., 2016. Evaluation of drought tolerance in wheat genotypes under drought stress at germination stage. Journal of Crop Breeding. 8, 207-219.‏
Singh, P., Hesham, M., Ibrahim, H.M., Flury, M., Schillinger, W.F., 2013. Critical water potentials for germination of wheat cultivars in the dryland Northwest USA. Seed Science Research. 23, 189–198.
Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Vadez, V., Loon, M.P.V., Ittersum, M.K.V., 2020. Future food self-sufficiency in Iran: A model-based analysis. Global Food Security. 24, 100351.
Soltani, A., Galeshi, S., 2002. Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crop Research. 77, 17-30.
Soltani, A., Zeinali, E., Galeshi, S., Latifi, N., 2001. Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea coast of Iran. Seed Science and Technology. 29, 653-662.‏
Soltani, E., Adeli, R., Akbari, Gh.A., Ramshin, H., 2017. Application of hydrotime model to predict early vigor of rapeseed (Brassica napus L.) under abiotic stresses. Acta Physiologiae Plantarum. 39, 252.
Soltani, E., Farzaneh, S., 2014. Hydrotime analysis for determination of seed vigor in cotton. Seed Science and Technology. 42, 260-273.‏
Sun, Y., Liu, F., Bendevis, M., Shabala, S., Jacobsen, S.E., 2014. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science. 200, 12-23.‏
Tatari, S., Ghaderi-Far, F., Yamchi, A., Siahmarguee, A., Shayanfar, A., Baskin, C.C., 2020. Application of the hydrotime model to assess seed priming effects on the germination of rapeseed (Brassica napus L.) in response to water stress. Botany. 98, 283–291.
Tesfaye, K., Kruseman, G., Cairns, J.E., Zaman-Allah, M., Wegary, D., Zaidi, P.H., Erenstein, O., 2018. Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate Risk Management. 19, 106-119.
Victor José Mendes Cardoso, V.J.M., Bianconi, A., 2013. Hydrotime model can describe the response of common bean (Phaseolus vulgaris L.) seeds to temperature and reduced water potential. Acta Scientiarum Biological Sciences. 35, 255-261.
Windauer, L., Altuna, A., Benech-Arnold, R., 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products. 25, 70-74.
World Water Assessment Programme (Nations Unies), The United Nations World Water Development Report 2018 (United Nations Educational, Scientific and Cultural Organization, New York, United States) www.unwater.org/publications/world-water-development-report-2018/. (2018)
Yazdi Samadi, B., 2017. Role of prospective technologies for food security in Iran and the world. Strategic Research Journal of Agricultural Sciences and Natural Resources. 2, 15-28.