Arzani, A., Ashraf, M., 2017. Cultivated ancient wheats (Triticum spp.): a potential source of health-beneficial food products. Comprehensive Reviews in Food Science and Food Safety. 16, 477-488.
Barraclough, P.B., Lopez-Bellido, R., Hawkesford, M.J., 2014. Genotypic variation in the uptake, partitioning and remobilization of nitrogen during grain-filling in wheat. Field Crops Research. 156, 242-248.
Crain, J., Bajgain, P., Anderson, J., Zhang, X., DeHaan, L., Poland, J., 2020. Enhancing crop domestication through genomic selection, a case study of intermediate wheatgrass. Frontiers in Plant Science. 11, 319.
De Mendiburu, F., 2014. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-1.
Food and Agriculture Organization (FAO)., 2013. Dietary protein quality evaluation in human nutrition. Report of an FAO expert consultation. FAO Food Nutriants Paper. 92, 1-79.
Food and Agriculture Organization (FAO), 2020. FAOSTAT. http://www.fao.org/faostat
Galili, T., 2015. Dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 31, 3718-3720.
Golparvar, A.R., Ghanadha, M.R., Zali, A.A., Ahmadi, A., Harvan, E.M., Ghasemi Pirbalooti, A., 2007. Factor analysis of morphological and morpho-physiological traits in bread wheat (Triticum aestivum L.) genotypes under drought and non-drought stress conditions. Pajouhesh and Sazandegi. 72, 52-59. [In Persian with English summary]
Gu, Z., Gu, L., Eils, R., Schlesner M., Brors, B., 2014. Circlize implements and enhances circular visualization in R. Bioinformatics. 30, 2811-2812.
Haghighattalab, A., Gonzalez-Perez, L., Mondal, S., Singh, D., Schinstock, D., Rutkoski, J., Ortiz-Monasterio, I., Singh, R.P., Goodin, D., Poland, J., 2016. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods. 12, 35.
Minitab Inc., 2013. Minitab 16 statistical software. Coventry, United Kingdom.
Mohseni, M., Mortazavian, S.M.M., Ramshini, H.A., Foghi, B., 2014. Evaluation of bread wheat genotypes under normal and post-anthesis drought stress conditions for agronomic traits. Journal of Crop Breeding, 8. 16-29. [In Persian with English summary]
Nuttonson, M.Y., 1995. Wheat-climatic relationships and the use of phenology in ascertaining the thermal and photothermal requirements of wheat. Washington, DC: Amerian Institute of Crop Ecolology.
Pask, A.J.D., Pietragalla, J., Mullan., Reynolds, M.P., 2012. Physiological breeding II: a field guide to wheat phenotyping. International Wheat and Maize Improvement Centre (CIMMYT), DF, Mexico.
Poland, J.A., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y., Dreisigacker, S., Crossa, J., Sanchez-Villeda, H., Sorrells, M.E., Jannink, J.-L., 2012. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 5, 103-113.
R Development Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Rahimi, Y., Bihamta, M.R., Talaei, A., Alipour, H., 2019. Genetic variability assessment of Iranian wheat landraces in term of some agronomic attributes under normal irrigation and rain-fed conditions. Iranian Journal of Field Crop Science. 50, 1-16. [In Persian with English summary]
Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Perez, L.G., Crossa, J., Reynolds, M., Singh, R., 2016. Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 (Bethesda). 6, 2799-2808.
SAS Institute, 2016. SAS® 9.4. Cary, NC, USA.
Sehgal, A., Sita, K., Siddique, K.H.M., Kumar, R., Bhogireddy, S., Varshney, R.K., HanumanthaRao, B., Nair, R.M., Prasad, P.V.V., Nayyar, H., 2018. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science. 9, 1705.
Shabannejad, M., Bihamta, M.R., Majidi-Hervan, E. Alipour, H., Ebrahimi, A., 2020. A simple, cost-effective high-throughput image analysis pipeline improves genomic prediction accuracy for days to maturity in wheat. Plant Methods .16, 146.
Sukumaran, S., Dreisigacker, S., Lopes, M., Chavez, P., Reynolds, M.P., 2015. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theoretical and Applied Genetics. 128, 353-363.
Sun, J., Poland, J.A., Mondal, S., Crossa, J., Juliana, P., Singh, R.P., Rutkoski, J.E., Jannink, J.-L., Crespo-Herrera, L., Velu, G., et al., 2019. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theoretical and Applied Genetics. 132, 1705-1720.
United States Department of Agriculture - Agricultural Research Service (USDA-ARS)., 2020. FoodData Central.
Wang, H., Qin, F., 2017. Genome-wide association study reveals natural variations contributing to drought resistance in crops. Frontiers in Plant Science. 8, 1110.
Zhang, J., Song, Q., Cregan, P.B., Jiang, G.L., 2016. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theoretical and Applied Genetics. 129, 117-130.