نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت ، دانشکده علوم کشاورزی، دانشگاه شاهد، تهران

2 دانشیار و هیئت‌علمی گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه شاهد، تهران

3 استادیار و عضو هیئت‌علمی گروه گیاهپزشکی، دانشکده علوم کشاورزی، دانشگاه شاهد، تهران

چکیده

پرایمینگ بذر روشی موثر جهت افزایش عملکرد بذر و بهبود تحمل محصولات زراعی نسبت به تنش‌های غیر زیستی بویژه خشکی می‌باشد. به منظور بررسی غلظت‌های مختلف سلنیوم (Na2SeO3) در شرایط تنش خشکی آزمایشی به صورت فاکتوریل با 5 سطح پرایمینگ با سلنیوم از منبع سلنیت سدیم (0.5، 1.5، 3، 4.5 و 6 میلی‌گرم در لیتر)، و دو سطح هیدروپرایمینگ و بدون پرایمینگ و سه سطح تنش خشکی با استفاده از پلی اتیلن گلایکول (PEG) (0.4، 0.8 و 1.2 مگاپاسگال) با سه تکرار در آزمایشگاه تکنولوژی بذر دانشکده علوم کشاورزی دانشگاه شاهد در سال 1398 انجام گرفت. نتایج نشان داد که پرایم با سلنیوم و اعمال تنش خشکی اثر معنی‌داری بر اکثر صفات جوانه‌زنی و رنگیزه‌های فتوسنتزی، میزان پرولین و آنزیم کاتالاز داشت. پرایم با سلنیوم در غلظت مناسب آن منجر به ظهور سریعتر گیاهچه در شرایط تش خشکی شد ولی با افزایش غلظت سلنیوم و همچنین افزایش سطوح تنش خشکی اثر بازدارنده‌ای را نشان داد. پیش تیمار با سلنیوم در غلظت 3 میلی‌گرم در لیتر بیشترین درصد جوانه‌زنی (94%)را با افزایشی 58 درصدی نسبت به تیمار عدم پرایمینگ و تنش شدید نشان داد. همچنین گیاهچه‌های که با سلنیوم پرایم شده بودند رنگیزه‌ی فتوسنتزی بیشتری را نسبت به عدم پرایمینگ و هیدورپرایم در شرایط تنش داشتند. بیشترین میزان پرولین و کاتالاز را در شرایط تنش شدید به ترتیب با غلظت 0.5 و 1.5 میلی‌گرم در لیتر مشاهده شد. بنابراین جهت بهبود جوانه‌زنی و رشد اولیه گیاهچه کینوا می‌توان با پرایمینگ بذر با استفاده از سلنیوم به نتیجه بهتری رسید.

کلیدواژه‌ها

موضوعات

Adolf, V.I., Jacobsen, S.E., Shabala, S., 2012. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany. 92, 43-54.
Aghighi Shahverdi, M., Omidi, H., 2017. Determination of optimum concentration and time of stevia (Stevia rebuadiana Bertoni) seed priming by selenium. Iranian Journal of Seed Science and Research, 4, 39-51. DOI: 10.22124/jms.2017.2506. [In Persian with English summary].
Ajirloo, A.R., M. Shaban, G.D. Moghanloo and. Ahmadi, 2013. Effect of priming on seed germination characteristics of wheat (Triticum aestivum L.). International Journal of Agriculture and Crop Sciences. 5, 1670-1674.
Ardebili, N.O., Saadatmand, S., Niknam, V., Khavari-Nejad, R.A., 2014. The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiologiae Plantarum. 36(12), 3199-3205.
Arif, M., Ali, S., Shah, A., Javed, N., Rashid A., 2005. Seed priming maize for improving emergence and seedling growth. Sarhad Journal Agriculture. 21, 239–243.
Arnon, D.I., 1949. Copper enzyme in isolated chlroplasts; polyphenol-oxidase in Beta vulgaris. Plant Physiology. 24, 1-15.
Ashraf, C. M., Abu‐Shakra, S., 1978. Wheat seed germination under low temperature and moisture stress. Agronomy Journal. 70(1), 135-139.
Ashraf, M., Foolad, M. R., 2005. Pre‐sowing seed treatment - A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in Agronomy. 88, 223-271.
Bates, L.S., Waldern, R.P., Tear, I.D., 1973. Rapid determination of free proline for water stress studies, Plant and Soil. 39, 205-207.
Bilgiçli, N., İbanoğlu, Ş., 2015. Effect of pseudo cereal flours on some physical, chemical and sensory properties of bread. Journal of Food Science and Technology. 52, 7525-7529.
Balochi, H.R., 2013. Effect of seed priming on germination and seedling growth in pumpkin seeds paper (Cucurbita pepo) under salt stress. Journal of Crop Production and Processing. 3, 169-179. [In Persian with English summary].
Combs, GF. Jr., Watts, J., Jackson, M., Johnson, L., Zeng, H., Scheett, A.J., Uthus, E.O., Schomburg, L., Hoeg, A., Hoefig, C.S., Davis, C.D., Milner, J.A., 2011. Determinants of selenium status in healthy adults. Nutrition Journal. 10, 75–82
Dhindsa, R.S., Motowe, W., 1981. Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. Journal of Experimental Botany. 32, 79-91.
Djanaguiraman, M., Devi, D.D., Shanker, A.K., Sheeba, J.A., Bangarusamy, U., 2005. Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil. 272, 77-86.
Djanaguiraman, M., Devi, D.D., Shanker, A.K., Sheeba, J.A., Bangarusamy, U., 2005. Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil. 272(1), 77-86.
El-Ramady, H. R., Domokos-Szabolcsy, É., Abdalla, N. A., Alshaal, T. A., Shalaby, T. A., Sztrik, A., Fári, M., 2014. Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters. 12(4), 495-510.
Feng, R., Wei, C., Tu, S., 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany. 87, 58-68.
Giri, J., 2011. Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior. 6(11), 1746-1751.
Gupta, B., Sengupta, A., Saha, J., Gupta, K., 2013. Plant abiotic stress: ‘Omics’ approach. Journal of Plant Biochemistry & Physiology. 1:3. http:/dx.doi.org/10.4172/2329-9029.1000e108
Gupta, U.C., Gupta, S.C., 2000. Selenium in soils and crops, its deficiencies in livestock and humans: implications for management. Communications in Soil Science and Plant Analysis. 31(11-14), 1791-1807.
Gust, A.A., Brunner, F., Nürnberger, T., 2010. Biotechnological concepts for improving plant innate immunity. Current Opinion in Biotechnology. 21(2), 204-210.
Gu, Z., Deming, C., Yongbin, H., Zhigang, C., Feirong, G., 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT-Food Science and Technology. 41(6), 1082-1088.
Hartikainen, H., 2005. Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace elements in Medicine and Biology. 18(4), 309-318.
Hasanuzzaman, M.M., Hossain, A., Fujita, M., 2012. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biological Trace Element Research. 149, 248–261.
Kaya, M.D., Okçu, G., Atak, M., Cıkılı, Y., Kolsarıcı, Ö., 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy. 24(4), 291-295.
Khaliq, A., Aslam, F., Matloob, A., Hussain, S., Geng, M., Wahid, A., Rehman, H., 2015. Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biological Trace Element Research, 166, 236-244. https://doi.org/10.1007/s12011-015-0260-4
Khan, R., Gurmani, A.H., Gurmani, A.R., Zia, M.S., 2006. Effect of boron application on rice yield under wheat rice system.International Journal of Agriculutre and Biology. 8: 805–808. https://www.fspublishers.org/published_papers/44772_.pdf.
Konishi, Y., Hirano, S., Tsuboi, H., Wada, M., 2004. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience Biotechnology and Biochemistry. 68, 231-234.
Li, J., Liang, D., Qin, S., Feng, P., Wu, X., 2015. Effects of selenite and selenite application on growth and shoot selenium accumulation of pak choi (Brassica chinesis L.) during successive planting conditions. Environmental Science and Pollution Research. 22, 11076-11086.
Martínez, E.A., Fuentes, F., Bazile, D. 2015. History of quinoa: its origin, domestication, diversification, and cultivation with particular reference to the Chilean context. In: Murphy, K., Matanguihan J. (eds.), Quinoa: Improvement and Sustainable Production. Hoboken: Wiley-Blackwell, p. 19-24. (World Agriculture Series).
Menon, N.N., Gandahi, M.B., Pahoja, V.M., Sharif, N., 2013. Response of seed priming with Boron on germination and seedling sprouts of Broccoli. International Journal of Agriculture Science and Research. 3(2), 183-194.
Michel, B.E., Kaufmann, M.R., 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51(5), 914-916.
Mirshekari, B., 2012. Seed priming with iron and boron enhances germination and yield of dill (Anethum graveolens). Turkish Journal of Agriculture and Forestry. 36, 27-33.
Molnarova, M., Fargašova, A., 2009. Se (IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L., Triticum aestivum L.) and dicotyledonae crops (Sinapis alba L., Brassica napus L.). Journal of Hazardous Materials. 172, 854-861. https://doi.org/ 10.1016/ j.jhazmat.2009.07.096
Mostofa, M.G., Hossain, M.A., Siddiqui, M.N., Fujita, M., Tran, L.S.P., 2017. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere. 178, 212-223.
Mouhtaridou, G.N., Sotiropoulos, T.E., Dimassi, K.N., Therios, I.N., 2004. Effects of boron on growth, and chlorophyll and mineral contents of shoots of the apple rootstock MM 106 cultured in vitro. Biologia Plantarum. 48, 617-619.
Moulick, D., Ghosh, D., Santra, S.C., 2016. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiology and Biochemistry. 109, 571-578.
Moulick, D., Santra, S. C., Ghosh, D., 2017. Seed priming with Se alleviate as induced phytotoxicity during germination and seedling growth by restricting as translocation in rice (Oryza sativa L cv. IET-4094). Ecotoxicology and Environmental Safety. 145, 449-456.
Mwenye, O.J., Van Rensburg, L., Van Biljon, A., Van der Merwe, R., 2016. The role of proline and root traits on selection for drought-stress tolerance in soybeans: a review. South African Journal of Plant and Soil. 33, 245-256.
Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich E.A., 2013. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research. 151, 284-293.
Nonogaki, H., Bassel, G.W., Bewley, J.D., 2010. Germination- Still a mystery. Plant Science. 179, 574-581.
Oelke, E.A., Putnam, D.H., Teynor, T.M., Oplinger, E.S., 2012. Quinoa. In: Alternative field crop manual. Dated on 27-08- 2016 retrieved from https://hort.purdue.edu/newcrop/afcm/quinoa.html.
Paparella, S., Araujo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., Balestrazzi, A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports. 34, 1281-1293.
Pennanen, A., Xue, T., Hartikainen, H., 2002. Protective role of selenium in plant subjected to severe UV irradiation stress. Journal of Applied Botany. 76, 66-76.
Rabieian, A., Jiriaie, M., Aynaband, A., 2014. Effects of selenium in decreasing effects of salinity negative and seed low storage in germination of Rice. Environmental Stresses in Crop Sciences. 7, 53-63. [In Persian with English summary].
Reddy, A.R., Chaitanya, K.V.and. Vivekanandan, M., 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology. 161, 1189-1202.
Rehman, A., Farooq, M., Cheema, Z. A., Wahid, A., 2012. Role of boron in leaf elongation and tillering dynamics in fine grain aromatic rice. Journal of Plant Nutrition. 36(1), 42-54, DOI: 10.1080/01904167.2012.733048.
Reis, H.P.G., Barcelos, J.P.Q., Furlani Junior, E., Santos, E.F., Silva, V.M., Moraes, M.F., Putti, F.F., Reis, A.R., 2018. Agronomic bio fortification of upland rice with selenium and nitrogen and its relation to grain quality. Journal. Cereal Science. 79, 508–515.
Saffaryazdi, A., Lahouti, M., Ganjeali, A., Bayat, H., 2012. Impact of selenium supplementation on growth and selenium accumulation on Spinach (Spinacia oleracea L.) plants. Notulae Scientia Biologicae. 4(4), 95-100.
 Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q., 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation. 48, 127–135.
Szollosi, R., 2014. Superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. Oxidative. Damage to Plants 89–129.
Tardieu, F., Parent, B., Caldeira, C., Welcker, C., 2014. Genetic and physiological controls of growth under water deficit. Plant Physiology. 164(4), 1628-1635.
.
Ullah, A., Shahzad, B., Tanveer, M., Nadeem, F., Sharma, A., Lee, D. J., Rehman, A., 2019. Abiotic stress tolerance in plants through pre-sowing seed treatments with mineral elements and growth regulators. In Priming and Pretreatment of Seeds and Seedlings (pp. 427-445). Springer, Singapore.
White, P.J., Bowen, H.C., Parmaguru, P., Fritz, M., Spracklen, W.P., Spiby, R.E., Meacham, M.C., Mead, A., Harriman, M., Trueman, L.J., Smith, B.M., Thomas, B., Broadley, M.R., 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany. 55, 404.
Xu, H., Biswas, D.K., Li, W.D., Chen, S.B., Zhang, S.B., Jiang, G.M., Li, Y.G., 2007. Photosynthesis and yield responses of ozone-polluted winter wheat to drought. Photosynthetica. 45, 582–588.
Yao, X.Q., Chu, J.Z., Wang, G.Y., 2009. Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiologiae Plantarum. 31, 1031-1036. DOI: 10.1007/s11738-009-0322-3.