نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی واحد کرج، کرج

2 استاد، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی واحد کرج، کرج

3 دانشیار، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان یزد، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد

4 استادیار، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی واحد کرج، کرج

5 دانشیار، گروه زراعت و اصلاح نباتات (پردیس ابوریحان)، دانشگاه تهران، تهران

چکیده

به‌منظور بررسی تأثیر سطوح مختلف کم ­آبیاری بر کیفیت و کمیت عملکرد گیاه تاج‌خروس علوفه‌ای، آزمایشی در سال‌های 1397 و 1398 از طریق تجزیه‌وتحلیل کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در یک مزرعه تحقیقاتی در یزد انجام شد. عامل اصلی این مطالعه سطوح مختلف آبیاری، پس از چهار سطح تخلیه مجاز رطوبتی آب قابل‌استفاده با مقادیر 50، 60، 70 و 80 درصد و عامل فرعی سه رقم مختلف گیاه تاج‌خروس علوفه‌ای شامل سیم، خارکووسکی و لوورا در نظر گرفته شد. پارامترهایی همچون عملکرد، بهره‌وری آب کشاورزی، نسبت وزن برگ به ساقه، قطر ساقه، ارتفاع بوته و درصد پروتئین خام ارزیابی گردید. نتایج نشان داد که افزایش فواصل آبیاری در مقایسه با تیمار آبیاری هنگام 50 درصد تخلیه آب زمین که به میزان 53.65 تن بر هکتار عملکرد علوفه‌تر داشت، سبب کاهش به ترتیب 22، 45 و 62 درصدی در عملکرد علوفه‌تر و همین‌طور سبب کاهش بهره‌وری آب، قطر ساقه و ارتفاع گیاه می‌گردد، درحالی‌که باعث افزایش درصد پروتئین خام و تا حدودی نسبت برگ به ساقه می‌گردد. علاوه بر این، برای تعیین مهم‌ترین شاخص‌های تنش از تجزیه‌وتحلیل مؤلفه‌های اصلی در سطوح مختلف کم ­آبیاری، میانگین هارمونیک و میانگین بهره‌وری به‌عنوان بهترین شاخص‌ها همراه با عملکرد علوفه خشک در شرایط تنش و بدون تنش، برای بررسی تحمل ارقام تاج‌خروس به شرایط کم‌آبی انتخاب شد. با توجه به یافته‌های میانگین‌های هارمونیک و بهره‌وری، نتیجه گرفته شد درحالی‌که رقم لوورا در شرایط بدون تنش و حتی با بروز تنش ملایم عملکرد بهتری داشت، ولی رقم سیم در شرایط تنش کم‌آبی متوسط و شدید، پایداری عملکرد بهتری از خود نشان داد.

کلیدواژه‌ها

موضوعات

Adhikary, D., Khatri-Chhetri, U., Slaski, J., 2020. Amaranth: An Ancient and High-Quality Wholesome Crop. Nutritional Value of Amaranth. IntechOpen. pp. 57-66.
Bidinger, F., Mahalakshmi, V., Rao G., 1987. Assessment of drought resistance in pearl millet (Pennisetum americanum L. Leeke). II. Estimation of genotype response to stress. Australian Journal of Agricultural Research. 38, 49-59.
Bouslama, M., Schapaugh, W., 1984. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop science. 24(5), 933-937.
Caselato‐Sousa, V.M., Amaya‐Farfán, J., 2012. State of knowledge on amaranth grain: a comprehensive review. Journal of Food Science. 77, 93-104.
Cook, S., Gichuki, F., Turral, H., 2006. Water productivity: Estimation at plot, farm and basin scale. People and Agro-Ecosystems Research for Development Challenge; CIAT: Cali, Colombia.144.
Fazaeli. H., Ehsani. P., Safayee. AR., Mehrani, A., 2011. Amaranth (Amaranthus hypochondriacus) as a new forage source. p. 19-20.  In Proceedings of the 5th International Conference. Oct. 2011. Balkan Conference on Animal Science, Bucharest, Romania.
Fernandez, G.C., 1992. Effective selection criteria for assessing plant stress tolerance. Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16. Shanhua, Taiwan.
Fischer, R., Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research. 29, 897-912.
Gao, S., Wang, Y., Yu, S., Huang, Y., Liu, H., Chen, W., He, X., 2020. Effects of drought stress on growth, physiology and secondary metabolites of two adonis species in Northeast China. Scientia Horticulturae. 259, 108795.
Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R., Ricciardi, G., Borghi, B., 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science. 77, 523-531.
Goodarzvand Chegini, Kh., Fotovat, R., Bihamta, M.R., Omidi, M., Shahnejant Boushehri, A., 2017. Grouping of tolerance indices and response of Kabuli and Desi type chickpea genotypes to drought stress. Iranian Journal of Field Crop Science. 48, 647-664. [In Persian with English Summary].
Karami, S., Hadi, H., Tajbakhsh, SM., Modaress, S., 2018. Effect of different levels of nitrogen and zeolite on chlorophyll content, Quantity and quality of Amaranth forage under deficit irrigation stress. Journal of Crops Improvement. [In Persian with English Summary].
Kirkham, M., 2005. Field capacity, wilting point, available water, and the non-limiting water range. Principles of soil and plant water relations.101-115.
Kjeldahl, J., 1883. Neue methode zur bestimmung des stickstoffs in organischen körpern. Zeitschrift für analytische Chemie. 22, 366-382.
Nabhan G.P., 1986. Gathering the Desert. University of Arizona Press. USA.
Nakhoda, B., Hashemi-Dezfouli, A., Banisadr, N., 2000. Water stress effects on forage yield and quality of pearl millet. Iranian Journal of Agricultural Sciences. 31, 701-712. [In Persian with English Summary].
Nouri, M.Z., Komatsu, S., 2013. Subcellular protein overexpression to develop abiotic stress tolerant plants. Frontiers in Plant Science. 4: 2.
Peiretti, P.G., 2018. Amaranth in animal nutrition: A review. Livestock Research for Rural Development, 30(5). pp. 1-20.‏
Rahnama, A., Safaeie, AR., 2017. Performance comparison of three varieties of Amaranth (Amaranthus hypochondriacus L.) at different harvest time. Journal of Asian Scientific Research. 7, 224-230.
Rahi AR, Najafi Zarrini H, Ranjbar G, Ghajar Spanlou M. 2020. Identification of drought tolerant genotypes of soybean plant using principal component analysis and cluster analysis. Environmental Stresses in Crop Sciences. 13, 27-40. [In Persian with English Summary].
Rosielle, A., Hamblin, J., 1981. Theoretical aspects of selection for yield in stress and non-stress environment 1. Crop Science. 21, 943-946.
Sánchez-Reinoso, AD., Ligarreto-Moreno, GA., Restrepo-Díaz, H., 2020. Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture. 19, 99-107.