نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مرکز ملی تحقیقات شوری، سازمان تحقیقات آموزش و ترویج کشاورزی، یزد

2 کارشناس ارشد مرکز ملی تحقیقات شوری، سازمان تحقیقات آموزش و ترویج کشاورزی، یزد

چکیده

کینوا گیاهی است سه کربنه با ارزش غذایی بالا و یک شورزیست اختیاری است. به‌منظور گزینش لاین­ های کینوا در کشت بهاره در شرایط شور 13 لاین با دوره رسیدگی متفاوت در 3 خط 5 متری در 18 اسفند 1394 در مزرعه تحقیقات شوری صدوق یزد در قالب طرح بلوک­های کامل تصادفی با سه تکرار با آب آبیاری با شوری dS/m 14 کشت گردید. مراحل فنولوژیک یادداشت شد و درنهایت ارتفاع گیاه، وزن هزار دانه، زیست‌توده، درصد سدیم و پتاسیم برگ و نسبت پتاسیم به سدیم اندازه­گیری شد. نتایج تجزیه واریانس نشان داد که اختلاف بین لاین­ه ا ازلحاظ کلیه صفات موردبررسی معنی­دار بود. مقایسه میانگین نشان داد لاین NSRCQ6 با اختلاف معنی­داری بیشترین میزان عملکرد (1422 کیلوگرم در هکتار) را داشت و سپس لاین­های NSRCQ7، NSRCQ10 و NSRCQ11 قرار گرفتند. رابطه همبستگی بین صفات نشان داد که عملکرد دانه با وزن هزار دانه و روز تا رسیدگی همبستگی مثبت و معنی­داری داشت. در تجزیه خوشه‌ای، لاین­های NSRCQ6 و NSRCQ11 در گروه زودرس بیشترین عملکرد دانه و وزن هزار دانه را داشتند. بررسی اثر دما در دوره پر شدن دانه نشان داد با افزایش هر یک درجه به میانگین و حداکثر دما عملکرد دانه به ترتیب 118 و 184 کیلوگرم در هکتار و وزن هزار دانه 0.2 و 0.27 گرم کاهش یافت. تجزیه به مؤلفه­ های اصلی نشان داد که سه مؤلفه اول بیشترین سهم را در واریانس داشتند و در مؤلفه اول، دوم و سوم به‌ترتیب وزن هزار دانه، نسبت پتاسیم به سدیم و درصد پتاسیم بیشترین سهم را در جهت مثبت با عملکرد و روز تا رسیدگی، روز تا گلدهی و ارتفاع گیاه بیشترین سهم را در جهت منفی با عملکرد داشتند. درنهایت لاین­های NSRCQ11 و NSRCQ6 برای بررسی در کشت­های بهاره انتخاب گردید. در بین صفات موردبررسی وزن هزار دانه، روز تا رسیدگی و درصد عناصر سدیم و پتاسیم جهت گزینش لاین­ها انتخاب شدند

کلیدواژه‌ها

موضوعات

Adolf, V.I., Jacobsen, S.E., Shabala, S., 2012. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany. 92, 43–54.
Bazile, D., Bertero, H.D., Nieto, C., 2015. State of the art report on quinoa around the world in 2013. FAO.650p.
Bertero, H., 2003. Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd.). Food Reviews International. 19, 87-97.
Bertero, H., King, R., Hall, A., 1999a. Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Research. 63, 19-34.
Bertero, H., King, R., Hall, A., 1999b. Photoperiod-sensitive development phases in quinoa (Chenopodium quinoa Willd.). Field Crops Research. 60, 231-243.
Bhargava, A., Shukla, S., Ohri, D., 2007. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research. 101, 104-116.
Brakez, M., El Brik, K., Daoud, S., Harrouni, M.C., 2013. Performance of Chenopodium quinoa Under Salt Stress. Developments in Soil Salinity Assessment and Reclamation. Springer, pp. 463-478.
Christensen, J.L., Jacobsen, S.E., Jørgensen, S.T., 2010. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agriculturae Scandinavica, Section B - Soil & Plant Science. 60, 539-554.
Derbali, W., Goussi, R., Koyro, H.-W., Abdelly, C., Manaa, A., 2020. Physiological and biochemical markers for screening salt tolerant quinoa genotypes at early seedling stage. Journal of Plant Interactions. 15, 27-38.
Devasirvatham, V., Gaur, P.M., Mallikarjuna, N., Raju, T.N., Trethowan, R.M., Tan, D.K., 2013. Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research. 142, 9-19.
Farshadfar, E.2010. Multivariance principle and procedure of statistics. Razi University Press. 734 pp. [In Persian].
Garcia, M., Condori, B., Castillo, C.D., 2015. Agroecological and Agronomic Cultural Practices of Quinoa in South America. Quinoa: Improvement and Sustainable Production. Wiley Online Library, pp. 25-46.
Ghaffari, A., Ghasemi, V.R., De Pauw, E., 2014. Agro-climatically zoning of Iran by UNESCO approach. Iranian Dryland Agronomy Journal 4, 63-95. [In Persian with English summary].
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S.-E., Shabala, S., 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany 62, 185-193.
Hinojosa, L., Matanguihan, J.B., Murphy, K.M., 2019. Effect ofhigh temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science. 205, 33-45.
Jacobsen, S.-E., Mujica, A., Jensen, C., 2003a. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International. 19, 99-109.
Jacobsen, S.E., 2003. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International. 19, 167-177.
Jacobsen, S.E., Mujica, A., Jensen, C., 2003b. The resistanceof quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International. 19, 99-109.
James, L.E.A., 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research. 58, 1-31.
Kiani-Pouya, A., Rasouli, F., Bazihizina, N., Zhang, H., Hedrich, R., Shabala, S., 2019. A large-scale screening of quinoa accessions reveals an important role of epidermal bladder cells and stomatal patterning in salinity tolerance. Environmental and Experimental Botany. 168, 103885.
Koyro, H.-W., Eisa, S., 2008. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil. 302, 79-90.
Koyro, H.W., Lieth, H., Eisa, S.S., 2008. SaltTolerance of Chenopodium quinoa Willd., Grains of the Andes: Influence of Salinity on Biomass Production, Yield, Composition of Reserves in the Seeds, Water and Solute Relations. Mangroves and Halophytes: Restoration and Utilisation, 133-145.
Lavini, A., Pulvento, C., d'Andria, R., Riccardi, M., Choukr-Allah, R., Belhabib, O., İncekaya, Ç., Metin Sezen, S., Qadir, M., Jacobsen, S.E., 2014. Quinoa's potential in the Mediterranean region. Journal of Agronomy and Crop Science. 200, 344-360.
Mhada, M., Jellen, E., Jacobsen, S., Benlhabib, O.2014. Diversity Analysis of a quinoa (Chenopodium quinoa Willd.) germplasm during two seasons. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 8,273-276.
Mojtabaie Zamani, M., Nabipour, M., Meskarbashee, M., 2015. Effect of heat stress during grain filling on photosynthesis and grain yield of bread wheat (Triticum aestivum L.) genotypes. Iranian Journal of Crop Sciences. 17, 1-17. [In Persian with English summary].
Murphy, K.S., Matanguihan, J., 2015. Quinoa: Improvement and sustainable production. John Wiley & Sons.355p.
Nowak, V., Du, J., Charrondière, U.R., 2015. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry. 193, 47-54.
Nsimba, R.Y., Kikuzaki, H., Konishi, Y., 2008.Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry. 106, 760-766.
Prasad, P.V., Djanaguiraman, M., 2011. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum.. Functional Plant Biology 38, 993-1003.
Qadir, M., Qureshi, A.S., Cheraghi, S., 2008. Extent and characterisation of salt‐affected soils in Iran and strategies for their amelioration and management. Land Degradation & Development. 19, 214-227.
Razzaghi, F., Ahmadi, S.H., Jacobsen, S.E., Jensen, C.R., Andersen, M.N., 2012. Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science. 198, 173-184.
Razzaghi, F., Ahmadi, S.H., Jensen, C.R., Jacobsen, S.-E., Andersen, M.N., 2011. The salt tolerance of quinoa measured under field conditions. International Congress on Irrigation and Drainage, Teheran, Iran, pp. 149-153.
Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A.K., Lizardi, S., Covarrubias, A., Martínez, E.A., Molina-Montenegro, M.A., Biondi, S., Zurita-Silva, A., 2011. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry. 49, 1333-1341.
Ruiz, K.B., Biondi, S., Oses, R., Acuña-Rodríguez, I.S., Antognoni, F., Martinez-Mosqueira, E.A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., 2014. Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for sustainable development. 34, 349-359.
Saad-Allah, K.M., Youssef, M.S., 2018. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants. 24, 617-629.
Salehi, M., 2020. Comparison of yield and yield components of different quinoa lines (Chenopodium quinoa) in autumn dryland cultivation in Gorgan. Journal of Crop Production. 13, 17-30. [In Persian with English summary].
Salehi, M., Soltani, V., Dehghani, F., 2019. Effect of sowing date on phenologic stages and yield of Quinoa (Chenopodium quinoa Willd.) under saline condition. Enviromental Stresses in Crop Science 12, 923-932. [In Persian with English summary].
Shabala, S., 2003. Regulation of potassium transport in leaves: from molecular to tissue level. Annals of Botany. 92, 627-634.
Shabala, S., Mackay, A., 2011. Chapter 5 - Ion Transportin Halophytes. In: Turkan, I. (Ed.), Advances in Botanical Research. Academic Press, pp. 151-199.
Tovar, J.C., Quillatupa, C., Callen, S.T., Castillo, S.E., Pearson, P., Shamin, A., Schuhl, H., Fahlgren, N., Gehan, M.A., 2020. Heating quinoa shoots results in yield loss by inhibiting fruit production and delaying maturity. The Plant Journal. 727545.
Zeglin, L., Bottomley, P.J., Jumpponen, A., Rice, C., Arango, M., Lindsley, A., McGowan, A., Mfombep, P., Myrold, D., 2013. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology. 94, 2334-2345.