نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق بخش تحقیقات دانه‎های روغنی مرکز تحقیقات کشاورزی و منابع طبیعی لرستان

2 دانشجوی سابق دکتری اصلاح نباتات گرایش ژنتیک مولکولی و مهندسی ژنتیک، دانشگاه تهران

3 استاد پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران

4 دانشیار پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران

5 دانشیار بخش تحقیقات دانه‌های روغنی، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات ،آموزش و ترویج کشاورزی،کرج، ایران

چکیده

میکرو RNAها گروهی از RNAهای کوچک غیررمزکننده پروتئین با طول تقریبا 18 تا 24 نوکلئوتید هستند که در تغییرات پس از رونویسی در یوکاریوت‏ها نقش سرکوب کننده mRNA دارند. به عبارت دیگر میکرو RNA بیان ژن را یا از طریق تجزیه یا سرکوب ترجمه mRNA تنظیم می‎. میکرو RNAها به‎طور مستقیم بر فرآیندهای مانند رشد و نمو، ریخت شناسی، زمان گلدهی، سوخت و ساز، متابولیسم اسیدهای چرب، گلیکولیز و پاسخ به تنش‌های زنده و غیر زنده در گیاهان تاثیرگذار هستند. برای شناسایی میکرو RNAها روش‌های مختلفی وجود دارد که استفاده از داده‌های زیستی(بیوانفورماتیک) یکی ازکم‎هزینه‎ترین و ساده‎ترین روش‌ها می‌باشد. توالی‌های miRAN بالغ شناخته‎شده از شمار زیادی گونه جانوری، گیاهی از پایگاه داده miRBase دانلود شد. از توالی‎های miRNA به‌عنوان توالی شناخته‎شده برای یافتن miRNAهای حفاظت‎شده بر پایه جستجوی همسانی بین miRNAها با GSSهای گیاه کلزا استفاده شد. ابتدا توالی‎های GSS در گیاه کلزا از بانک اطلاعاتی NCBI در برابر miRNAهای شناخته‌شده BLASTn شدند. برای شناسایی رونوشت‎ها و ژن‏های هدف از تشابه مکمل معکوس بین miRNA و رونوشت هدف استفاده شد. در نهایت پنج عدد miRNA بالغ جدید شناسایی‌شد. ژن‌های مانند LUC7L3 ,UEL1D ,WSD1 ,LBD41 ,HST,NST1 ,CIPK26 و CNOT11 که به چندین خانواده ‎ژنی با عملکردهای بیولوژیکی مختلف تعلق داشتند، شناسایی‎شد. در این تحقیق از سرورها و نرم‏افزارهای مانند Mfold، miRBase، psRNATarget و GC content استفاده شد.

کلیدواژه‌ها

موضوعات

 
Akdogan, G., Tufekci, E.D., Uranbey, S., Unver, T., 2015. miRNA-based drought regulation in wheat. Functional and Integrative Genomics. 16, 221-223.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25, 3389–3402.
Chi, X., Yang, Q., Chen, X., Wang, J., Pan, L. 2011. Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS ONE 6(11) e27530.
Dai, X., Zhao, P.X., 2018. PsRNATarget: a plant small RNA target analysis erver. Nucleic Acids Research. 46, 49-54.
Ding Y., Tao Y., Zhu C., 2013. Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of Experimental Botany. 64, 3077-3086.
Donaire, L., Pedrola, L., de la Rosa, R., Llave, C., 2011. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS ONE 6(11).e27916.
Hackenberg, M., Gustafson, P., Langridge, P., Shi, B.J., 2015. Differential expression of micro RNAs and other small RNA s in barley between water and drought conditions. Plant Biotechnology. 13, 2-13.
Jaiswal, S., Iquebal, M.A., Arora, V., Sheoran, S., Sharma, P., Angadi, U.B., Dahiya, V., Singh, R., Tiwari, R., Singh, G.P., Rai, A., 2019. Development of species specific putative miRNA and its target prediction tool in wheat (Triticum aestivum L.). Scientific Reports.9,3790.1038/s41598-019-40333-y
Karimi, A. A., Naghavi, M. R., Nasiri, J., 2017. Identification of miRNAs and their related target genes in Papaver somniferum. Iranian Journal of Field Crop Science. 4, 1161-1170. [In Persian].
Li, B., Qin, Y., Duan, H., Yin, W., Xia, X., 2011. Genome-wide characterization of new and drought stres responsive microRNAs in Populus euphratica. Journal of Experimental Botany. 62, 3765–3779.
Li, C., Zhang, B., 2016. MicroRNAs in control of plant development. Journal of Cellular Physiology. 231, 303–313.
Li, H., Dong, Y., Yin, H., Wang, N., Yang, J., 2011. Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biology. 170, 1471-2229.
Li, Y.F., Zheng, Y., Addo Quaye, C., Zhang, L., Sain, A., 2010. Transcriptome-wide identification of microRNA targets in rice. The Plant Journal. 62(5), 742-759.
Mao, W., Li, Z., Xia, X., Li, Y., Yu, J., 2012. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS ONE. 7(3) e33040.
Megha, S., Basu, U., Joshi, R.K., Kav, N.N.V., 2018. Physiological studies and genome-wide microRNA profiling of cold-stressed Brassica napus. Plant Physiology and Biochemistry. 132, 1–17.
Miranda, R.S., Alvarez-Pizarro, J.C., Costa, J.H., Paula, S.O., Prisco, J.T., Gomes-Filho, E., 2017. Putative role of glutamine in the activation of CBL/CIPK signalling pathways during salt stress in sorghum. Plant Signaling and Behavior. 12:8, e1361075, DOI: 10.1080/15592324.2017.1361075
Mitsuda, N., Seki, M., Shinozaki, K., Ohme-Takagia, M., 2005. The NAC transcription factors NST1 and NST2 of arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell. 17(11), 2993–3006.
 Mohanpuria, P., Duhan, N., Sarao, N.K., Kaur, M., Kaur, M., 2018. In silico identification and validation of potential microRNAs in kinnow Mandarin (Citrus reticulata Blanco). 10, 762–770.
Navabpour, S., Haddad, R., 2010. Evaluation of glutamine syntetase gene role in growth stage of Brassica Napus and drought stress condition. Journal of Crop Breeding. 2(6), 26-36. [In Persian with English summary].
Noori daloii, M.R., Alvandi, A., 2006. MicroRNA (miRNA): Small but strategic and mysterious. Tehran University Medical Journal. 64(6), 5-18. [In Persian with English summary].
Ozhuner, E., Eldem, V., Ipek, A., Okay, S., Sakcali, S., Zhang, B., Boke, H., Unver, T., 2013. Boron stress responsive microRNAs and their targets in barley. PLoS ONE 8(3). e59543.
Sharma, D., Tiwari, M., Lakhwani, D., Tripathi, R.D., Trivedi, P.K., 2015. Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics. 7, 174-187.
Shipman, K.L., Robinson, P.J., King, B.R., Smith, R., Nicholson, R.C., 2006. Identification of a family of DNA-binding proteins with homology to RNA splicing factors. Biochemistry and Cell Biology. 84, 9-19.
Tan, M.F., Liao, L., Hou, J., Wang, L., Wei, H., Jian, X., Li, J., 2017. Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica. 213, 40. https://doi.org/10.1007/s10681-016-1832-x
Ukleja, M., Cuellar, J., Siwaszek, A., Kasprzak, J.M., Czarnocki-Cieciura, M., Bujnicki, M.J., Ukleja, M., Cuelar, J., Siwaszek, A., Kasprzak, J.M., Czarnocki-Cieciura, M., Bujnicki, J.M., Dziembowski, A., Valpuesta, J.M., 2016. The architecture of the Schizosaccharomyces pombe CCR4-NOT complex. Nature Communications. 7, 10433.
Vivek, A.T., 2018. In silico identification and characterization of miRNAs based on EST and GSS in Orphan legume crop, Lens culinaris medik, (lentil). Agri Gene. 8, 45-56.
Wang, T., Chen, L., Zhao, M., Qiuying Tian, Q., Hao Zhang, W. 2011. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics. 12, 367. Doi: 10.1186/1471-2164-12-367.
Wen, R., Torres-Acosta, J.A., Pastushok, L., Lai, X., Pelzer, L., Wang, H., Xiao, W., 2008. Arabidopsis UEV1D promotes lysine-63-linked polyubiquitination and is involved in DNA damage response.  The Plant Cell. 20, 213-227.
Zhang, B., Pan, X., Wang, Q., Cobb, G. P., Anderson, T.A. 2006. Computational identification of microRNAs and their targets. Computational Biology and Chemistry. 30(6), 395-407.
Zhang, Y. 2005. miRU: an automated plant miRNA target prediction server. Nucleic Acids Research. 33(2), 701-704.
Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research. 31(13), 3406-3415.