Abbasi-Vineh, M.A., 2016. The Role of Two Genes AtPAP17 and AtPAP26 in Salt Stress Tolerance in Arabidopsis thaliana Plants. M.Sc. dissertation, University of Tarbiat Modares, IRAN. [In Persian with English Summary].
Ashraf, M.P.J.C., Harris, P.J.C., 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science. 166(1), 3-16.
Barrett-Lennard, E., Robson, A., Greenway, H., 1982. Effect of phosphorus deficiency and water deficit on phosphatase activities from wheat leaves. Journal of Experimental Botany. 33(4), 682-693.
Barrett-Lennard, E.G., Van Ratingen, P., Mathie, M.H., 1999. The developing pattern of damage in wheat (Triticum aestivum L.) due to the combined stresses of salinity and hypoxia: experiments under controlled conditions suggest a methodology for plant selection. Australian Journal of Agricultural Research. 50(2), 129-136.
Boyer, J.S., 1982. Plant productivity and environment. Science. 218(4571), 443-448.
Del Pozo, J.C., Allona, I., Rubio, V., Leyva, A., De La Peña, A., Aragoncillo, C., Paz-Ares, J., 1999. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising oxidative stress conditions. The Plant Journal. 19(5), 579-589.
Ehsanpour, A., Amini, F., 2003. Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. African Journal of Biotechnology. 2(5), 133-135.
Farhadi, S,.2015.Producing of Homozygote double mutant lines in Arabidopsis thaliana PAP17 and PAP26 Genes. M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran. [In Persian with English Summary].
Farhadi, S., Sabet, MS., Moieni, A., Malboobi, MA., 2019. The effect of two phosphatase AtPAP17 and AtPAP26 gene-knock-out on growth period duration and flowering in Arabidopsis thaliana plants. Modern Genetics Journal. 15(1), 1-10. [In Persian with English Summary].
Hasegawa, P.M., 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany. 92, 19-31.
Hurley, B.A., Tran, H.T., Marty, N.J., Park, J., Snedden, W.A., Mullen, R.T., Plaxton, W.C., 2010. The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation. Plant Physiology 153(3), 1112-1122.
Jamali, A,. 2014. Functional Analysis of AtPAP17 Gene Encoding a Purple Acid Phosphatase in Arabidopsis thaliana Plants. M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran. [In Persian with English Summary].
Landis, T.D., Pinto, J.R., Davis, A.S., 2009. Fertigation injecting soluble fertilizers into the irrigation system. Forest Nursery Notes. 29(2), 4-13
Lohrasebi, T., Malboobi, M. A., Samaeian, A., Sanei, V., 2007. Differential expression of Arabidopsis thaliana acid phosphatases in response to abiotic stresses. Iran Journal Biotechnol.5(3), 130-139.
Mahajan, S., Tuteja, N., 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics.444(2), 139-158.
Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D.J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., Uozumi, N., Robertson, W., 2002. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS letters. 531(2),157-161.
Navarro, J.M., Botella, M.A., Cerdá, A., Martinez, V., 2001. Phosphorus uptake and translocation in salt-stressed melon plants. Journal Plant Physiology.158(3), 375-381.
Rychter, A.M., Rao, I., 2005.Role of phosphorus in photosynthetic carbon metabolism. Handbook of Photosynthesis,2, 123-148.
Robinson, W.D., Park, J., Tran, H.T., Del Vecchio, H.A., Ying, S., Zins, J.L., Patel, K., McKnight, T.D. and Plaxton, W.C., 2012. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany. 63(18), 6531-6542.
Sabet, M.S., Zamani, K., Lohrasebi, T., Malboobi, M.A., Valizadeh, M., 2018. Functional assessment of an overexpressed Arabidopsis purple acid phosphatase gene (AtPAP26) in tobacco plants. Iranian Journal of Biotechnology. 16(1), 31-41.
Sabet, M.S., 2011.Functional Analysis of AtPAP26 Gene Encoding a Purple Acid Phosphatase in Arabidopsis thaliana and Gene Transfer and Expression Analysis in tobacco. Ph.D. Dissertation, University of Tabriz, Tabriz, IRAN. [In Persian with English Summary].
Saleki, R., Young, P.G., Lefebvre, D.D., 1993. Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiology. 101(3), 839-845.
Veljanovski, V., Vanderbeld, B., Knowles, V.L., Snedden, W.A., Plaxton, W.C., 2006. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. Plant Physiology. 142 (3), 1282-1293.
Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X., Close, T.J., 2006. Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Functional and Integrative Genomics. 6(2), 143-156.
Zamani, K., Sabet, M.S., Lohrasebi, T., Mousavi, A., Malboobi, M.A., 2012. Improved phosphate metabolism and biomass production by overexpression of AtPAP18 in tobacco. Biologia. 67(4), 713-720.
Zhu, Jian Kang, 2001. Plant salt tolerance. Trends in Plant Science. 6 (2), 66-71.