نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش ‏آموخته دکتری، دانشکده کشاورزی، دانشگاه صنعتی شاهرود

2 دانشیار گروه زراعت، دانشکده کشاورزی، دانشگاه صنعتی شاهرود

3 استاد گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

به‌منظور بررسی اثر همزیستی قارچ‏های اندوفیت و محلول ‏پاشی پلی‌آمین اسپرمیدین بر شاخص‌های رشدی و فیزیولوژیک گیاه دارویی استویا در شرایط تنش شوری، آزمایش گلخانه‏ ای به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. فاکتورهای آزمایشی شامل تنش شوری (صفر، 6 و 12 دسی‌زیمنس بر متر)، تیمار همزیستی قارچی [عدم تلقیح (شاهد)، تلقیح Piriformospora indica (Pi)، تلقیح Trichoderma virens (Trich) و تلقیح هم‌زمان دو قارچ (Pi+Trich)] و محلول‌پاشی اسپرمیدین (صفر، 0.75 و 1.5 میلی‌مولار) بود. نشاهای استویا پس از تلقیح با تیمارهای قارچی تا اواخر مرحله رویشی با آب معمولی و سپس به مدت دو هفته با تیمارهای آب شور که حاوی مخلوط آب دریای خزر و آب مقطر بود، آبیاری شدند. محلول‌پاشی اسپرمیدین یک هفته قبل از اعمال تنش شوری انجام شد. نتایج نشان داد در شرایط شور، همزیستی قارچی به‌ویژه Pi+Trich وزن خشک ساقه (64-40 درصد) و برگ (50-44 درصد)، محتوای نسبی آب برگ (30-5 درصد) و پرولین (64-40 درصد) را افزایش و نشت الکترولیت را (20-11 درصد) کاهش داد. محلول‌پاشی 0.75 میلی‌مولار اسپرمیدین نیز وزن خشک برگ و ارتفاع بوته را افزایش داد. از طرفی، همزیستی قارچی به‌ویژه Pi+Trich و محلول‌پاشی اسپرمیدین 0.75 میلی‌مولار منجر به افزایش محتوای نسبی آب برگ گردید. همچنین، محلول‌پاشی اسپرمیدین در هر دو غلظت 0.75 و 1.5 میلی‏مولار باعث افزایش و بکارگیری قارچ‌های اندوفیت به‌خصوص Pi+Trich منجر به کاهش محتوای قند به میزان 17 درصد شد. در سطوح شوری و تیمارهای قارچی، محلول‌پاشی اسپرمیدین به‌ویژه در غلظت 0.75 میلی‌مولار افزایش قطر ساقه (35-10 درصد) و سطح برگ (46-35 درصد) را به دنبال داشت. در مجموع، کاربرد قارچ‌های اندوفیت و محلول‌پاشی اسپرمیدین موجب بهبود تحمل گیاه به تنش شوری گردید.

کلیدواژه‌ها

Abd_Allah, E.F., Abeer Hashem, A.A., Alqarawi, A., Bahkali H., Alwhibi, M.S., 2015. Enhancing growth performance and systemic acquired resistance of medicinal plant (Sesbania sesban L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biology Sciences. 22, 274-283.
Abdel Aziz Nahed, G., Taha Lobna, S., Ibrahim Soad, M.M., 2009. Some studies on the effect of putrescine, ascorbic acid and thiamine on growth, flowering and some chemical constituents of gladiolus plants at Nubaria. Ozean Journal of Applied Sciences. 2, 169-179.
Abeer, H., Alterami Salwa, A., Alqarawi, A.A., Elsayed Fathi., A.A., 2016. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pakistan Journal of Botany. 48, 37-45.
Allen, D.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science. 6, 36-41.
Amraee Tabar, S., Ershadi, A., Robati, T., 2016. The Effect of Putrescine and Spermidine on Drought Tolerance of Almond and Peach. Agricultural Crop Management. 18(1), 203- 218. [In Persian with English Summary].
Auge, R.M., Stodola, A.J.W., Times, J.E., Saxton, A.M., 2001. Moisture retention properties of a mycorrhizal soil. Journal of Plant and Soil. 230, 87-97.
Bachrach, U., 2005. Naturally occurring polyamines: interaction with macro-molecules. Current Protein Peptide Science. 6, 559-566.
Bahari Saravi, H., Gholami, A., Pirdashti, H., Baradaran Firouzabadi, M., Asghari, H.R., 2019. The growth and physiological response of stevia (Stevia rebaudiana Bertoni) medicinal plant to inoculated with endophytic fungi and spraying of spermidine polyamine under salt stress conditions. Journal of Plant Process and Function. 8(33), 47-64. [In Persian with English Summary].
Bahari Saravi, H., Pirdashti, H., Yaghoubian, Y., 2017. Response of chlorophyll fluorescence and physiological parameters of basil (Ocimum basilicum L.) to plant growth promoting rhizobacteria (PGPR) under salinity stress. Journal of Plant Process and Function. 6 (19), 89-104. [In Persian with English Summary].
Baniasadi, F., Saffari, V.R., Maghsoudi Moud, A.A., 2015. Effect of putrescine and salinity on morphological and biochemical traits and pigment content of marigold plant (Calendula officinalis L.). Journal of Science and Technology of Greenhouse Culture. 6 (1), 125- 134. [In Persian with English Summary].
Bates L, S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39, 205-207.
Ben-Asher, J., Tsuyuki, I., Bravdo, B.A., Sagih, M., 2006. Irrigation of grape vines with saline water: Leafarea index, stomatal conductance, transpiration and photosynthesis. Agricultural Water Management. 83, 13-21.
Bewley, J.D., 1979. Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology. 30, 195-238.
Bhosale, K.S., Shinde, B.P., 2011. Influence of arbascular mycorhizal fungi on proline and chlorophyll content in Zingeber officinale grown under water stress. Indian Journal of Fundemental and Applied Life Sciences. 1, 172-176.
Bierman, B., Linderman, R.G., 1980. Quantifying vesicular–arbuscular mycorrhizae: a proposed method towards standardization. New Phytologist. 87, 63 – 67.
Delauney, A.J., Verna, D.P.S., 1993. Proline biosynthesis and osmoregulation in plants. Plant Journal. 4, 215-223.
Farooq, M., Wahid, A., Lee, D.J., 2009. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum. 31, 937-945.
Farooq, S., Azam, F., 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology. 163, 629-637.
Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C., Rengel, Z., 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12, 185–190.
Fricke, W., Peter, W.S., 2002. The biophysics of leaf growth in salt-stressed barley. A Study at the cell level. Plant Physiology.1. 374–388.
Gad, N., 2005. Interactive effect of salinity and cobalt on tomato plants II-Some physiological parameters as affected by Cobalt and Salinity. Research Journal of Agriculture and Biological Sciences. 1, 270-276.
Garg, N., Manchanda, G., 2009. Role of Arbuscular Mycorrhizae in the Alleviation of Ionic, Osmotic and Oxidative Stresses Induced by Salinity in (Cajanus cajan L.) Mill sp. (pigeon pea). Journal Agronomy and Crop Science. 195, 110–123.
Gharineh, M.H., Nadian, H., Fathi, G., Siadat, A., Maadi, B., 2009. Role of arbuscular mycorrhizae in development of salt-tolerance of Trifolium alexandrinum plants under salinity stress. Journal of Food, Agriculture and Environment. 7, 432-437.
Ghorbani, A, Razavi, S. M, Ghasemi, V., and Pirdeshti, H. 2019. Effects of Endophyte Fungi Symbiosis on Some Physiological Parameters of Tomato Plants Under 10 Day Long Salinity Stress. Journal of Plant Process and Function. 7 (27), 193-208. [In Persian with English Summary].
Goyal, S.K., Samsher, R., Goyal, R.K., 2010. Stevia (Stevia rebaudiana) a bio-sweetener: A review. International Journal of Food Sciences and Nutrition. 61, 1-10.
Hussein, M., Nadia, M., EL-Gereadly, H.M., EL-Desuki, M., 2006. Role of putrescine in resistance to salinity of pea plants (Pisum sativum L.). Applied Science Research. 2, 598-604.
Kadian, N., Yadav, K., Badda, N., Aggarwal, A., 2013. AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. Under salt stress. Russian Agricultural Sciences. 39, 321-329.
Kaur-awhney, R., Tiburcio, A., Altabella, T., Galton, W., 2003. Polyamines in plants: An overview. Journal of Cell and Molecular Biology. 2, 1-12.
Kerepesi, I., Galiba, G., 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science. 40, 482-487.
Khalvandi, M., Amerian, M. R., Baradaran, M., and Gholami, A. 2017. Piriformospora indica symbiotic effect on the quantity and quality of essential oils and some physiological parameters of peppermint (Mentha piperita) under salt stress. Journal of Plant Process and Function. 6 (21), 169-184. [In Persian with English Summary].
Khan, A.S., Zora, S., Abbasi, N.A., 2007. Pre-storage putrescine application suppresses ethylene biosynthesis and retards fruit softening during low temperature storage in Angelino plum. Postharvest Biology and Technology. 46, 36-46.
Levitt, J., 1980. Responses of Plants to Environmental Stresses. Academic Press, New York, 607p.
Liu, J.H., Kitashiba, H., Wang, J., Ban, Y., Moriguchi, T., 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology. 24, 117-126.
Lutts, S., Kinet, J.M., Bouharmont, J., 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany. 46, 1843–1852.
Mahgoub, M.H., Abd El Aziz, N.G., Mazhar, M. A., 2011. Response of Dahilia pinnata L. plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. American Journal of Agricultural Environmental Science. 10, 769-775.
Mahros, K. M., El-Saady, M.B., Mahgoub, M. H., Afaf, M.H., El-Sayed, M.I., 2011. Effect of putrescine and uniconazole treatments on flower characters and photosynthetic pigments of Chrysanthemum indicum L. Plant. Journal of American Science. 7, 399-408.
Manchanda, G., Garg, N., 2008. Salinity and its effects on the functional biology of legumes. Acta Physiologia Plantarum. 30, 595-618.
Oelmuller, R., Sherameti, I., Tripathi, S., Varma, A., 2009. Piriformospora, a cultivable root endophyte with multiple biotechnological applications. Symbiosis. 49, 1-17.
Omokolo, N.D., Tsala, N.G., Djocgoue, P.F., 1996. Changes in carbohydrate, amino acid and phenol content in cocoa pods form three clones after infection with Phytophthora megakarya Bra. And Grif. Annales Botanici Fennici. 77, 153-158.
Orcutt, D.M., Nilsen, E.T., 2000. Physiology of Plants under stress soil and biotic factors. John Wiley and Sons Inc. KA/PP, p,177-235.
Parida, A.K., Das, A.B., 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety. 60, 324-349.
Pirdashti, H., Yaghoubian, Y., Mohammadi Goltapeh, E., Hosseini, S.J., 2012. Effect of mycorrhiza-like endophyte (Sebacina vermifera) on growth, yield and nutrition of rice (Oryza sativa L.) under salt stress. Journal of Agricultural Technology. 8, 1651-1661.
Ritchie, S.W., Nguyen, H.T., 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science. 30, 105-111.
Sanchez-Rodrıguez, E., Rubio-Wilhelmi, M., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Romero, L., Ruiz, J.M., 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress undermoderate drought in tomato plants. Plant Science. 178, 30–40.
Seraj, F., Pirdashti, H.; Yaghoubian, Y., Ghasemi Omran, V., 2016. The effect of Piriformospora indica inoculation on salt and drought stress tolerance in Stevia rebaudiana under in vitro conditions. Iranian Journal of plant Biology. 8 (29), 1-20. [In Persian with English Summary].
Singh, L.P., Gill, S.S., Tuteja, N., 2011. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling and Behavior.6, 175-191.
Siringam, K., Juntawong, N., Cha-um, S., Kirdmanee, C., 2011. Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under is oosmotic conditions. African Journal of Biotechnology. 10, 1340-1346.
Sun, Y.M., Horng, C.Y., Chang, F.L., Cheng, L. C., Tian, W.X., 2010. Biosorption of lead, mercury and cadmium ions by Aspergillus tereuss immobilized in a natural matrix. Polish Journal of Microbiology. 59, 37-44.
Syed Sarfraz, H., Muhammad, A., Maqbool, A., Kadambot, H.M., 2011. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants”. Biotechnology Advances. 29, 300-311.
Talaat, I.M., Bekheta, M.A., Mahgoub, M.H., 2005. Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. International Journal of Agriculture and Biology. 7, 210-213.
Tavarini, S., Angelini, L.G., 2013. Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. Journal of the Science of Food and Agriculture. 93, 2121-2129
Unal, D., Tuney, I., Sukatar, A., 2007. The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352 nm) stress in Physica semipinnata. Journal of Photochemistry and Photobiology. 90, 64-68.
Varma, A., Bakshi, M., Lou, B., Hartmann, A., Oelmuller, R., 2012. Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Review. NAAS (National Academy of Agricultural Sciences). Agricultural Research. 1, 117–131.
Varma, A., Verma, S., Sudha Sahay, N.S., Bütehorn, B., Franken, P., 1999. P. indica, a cultivable plant growth promoting root endophyte. Applied and Environmental Microbiology. 65, 2741-4.
Velazquez-Robledo, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., Hernandez-Morales, A., Aguirre, J., Casas-Flores, S., López-Bucio, J., Herrera-Estrella, A., 2011. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism, and induction of plant defense responses. Molecular Plant-Microbe Interactions Journal. 24, 1459-1471.
Vierheilig, H., Coughlan, A.P., Wyss, U., Piche, Y., 1998. Ink and vinegar, a simple staining technique for Arbuscular-mycorrhiza fungi. Applied and Environmental Microbiology. 12, 5004-5007.
Yaghoubian, Y., Goltapeh, E.M., Pirdashti, H., Esfandiari, E., Feizias, V., Dolatabadi, H.K., Varma, A.M.H., 2014. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. Agricultural Research. 3, 239-245.
Yaghoubian, Y., Siadat, S.A., Telavat, M.R.M., Pirdashti, H., Yaghoubian, I., 2019. Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environmental Science and Pollution Research. 26, 7863–7872.
Yan-ping, Z., Hai-he, L., Shu-xing, S., Cheng-he, Z., Xin-e, H., 2010. Effect of polyamine priming on seed vigor and seedling chilling tolerance in eggplant. Acta Horticulturae Sinica. 37, 1783–1788.
Zhang, K., John, P.C.L., 2005. Raised level of cyclin dependent kinase after prolonged suspension culture of Nicotiana plumbaginifolia is associated with more rapid growth and division, diminished cytoskeleton and lost capacity for regeneration: implications for instability of cultured plant cells. Plant Cell Tissue and Organ Culture. 82, 295-308.
Zhu, J.K., 2001. Plant salt tolerance. Trends in Plant Science. 6, 66–71.