نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، زیست‌شناسی فیزیولوژی گیاهی، دانشگاه تبریز

2 استاد گروه زیست‌شناسی دانشگاه تبریز

3 دانشیار گروه زیست‌شناسی و پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد

4 استادیار گروه بقولات، پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد

چکیده

خشکی از مهم‌ترین تنش‌های محیطی است که رشد و عملکرد گیاهان را تحت تأثیر قرار می‌دهد. استفاده از نانو ذرات می‌تواند به‌عنوان راه‌کاری در تعدیل اثرات تنش خشکی مؤثر واقع شود. در همین راستا، تأثیر محلول‌پاشی نانو ذرات دی‌اکسید تیتانیوم در شرایط تنش خشکی روی نخود به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در شرایط گلخانه در دانشگاه فردوسی مشهد در سال 1396 مورد بررسی قرار گرفت. سطوح مختلف تنش خشکی شامل ۴۰، ۶۰ و ۹۰ (به عنوان شاهد) درصد ظرفیت زراعی و محلول‌پاشی نانو ذرات دی‌اکسید تیتانیوم در پنج سطح صفر، ۵، 10، 20 و ۴۰ میلی‌گرم در لیتر بود. افزایش غلظت نانوذره دی‌اکسید تیتانیوم تا ۲۰ میلی‌گرم در لیتر در هر سه سطح تنش خشکی، موجب افزایش شاخص کلروفیل، هدایت روزنه‌ای، تعداد برگ، سطح برگ، وزن خشک برگ، وزن خشک ساقه، وزن خشک کل اندام هوایی، مجموع طول ریشه، متوسط قطر ریشه، سطح ریشه و حجم ریشه نخود شد و با افزایش بیشتر غلظت نانو ذرات این ویژگی‌ها روند کاهشی نشان دادند. در سطوح تنش خشکی مصرف نانو ذرات دی‌اکسید تیتانیوم سبب افزایش مقدار پتانسیل اسمزی برگ در مقایسه با 90 درصد ظرفیت زراعی شد. در سه سطح 40، 60 و 90 درصد ظرفیت زراعی با افزایش غلظت نانو ذرات دی‌اکسید تیتانیوم از تیمار شاهد به 20 میلی‌گرم در لیتر به ترتیب 46، 27 و 68 درصد وزن خشک کل اندام هوایی و 23، 49 و 54 درصد وزن خشک ریشه افزایش یافت. به‌طورکلی نتایج نشان داد که در شرایط تنش خشکی، کاربرد نانو ذرات دی‌اکسید تیتانیوم با غلظت ۲۰ میلی‌گرم در لیتر می‌تواند اثرات منفی ناشی از تنش خشکی در گیاه نخود به صورت چشمگیری کاهش دهد.

کلیدواژه‌ها

 
Ahmad, A., Senapati, S., Khan, M.I., Kumar, R., Sastry, M., 2005 Extra-intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. Journal of Biomedical Nanotechnology. 1(1), 47-53.
Ajouri, A., Asgedom, H., Becker, M., 2004. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science. 167(5), 630-636.
Akkerman, Q.A., Gandini, M., Di Stasio, F., Rastogi, P., Palazon, F., Bertoni, G., Ball, J.M., Prato, M., Petrozza, A., Manna, L., 2017. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nature Energy. 2(2), 16942.
Anwar, M.R., McKenzie, B.A., Hill, G.D., 2003. Phenology and growth response to irrigation and sowing date of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate. The Journal of Agricultural Science. 141(3-4), 273-284.
Ashkanvand, P., Tabari, M., Zarafshar, M., 2015. Apllied of Nanoparticle in botany, from www.nano.ir.
Azizi, Kh., Norozian, A., Yaghoobi, S., 2011. Effect of foliar application of zinc and bore elements on the grain yield, yield components, some indicators of growth, protein and oil content of rapeseed seed in climate Khorramabad. Journal of Agricultural Science. 4, 1-16. [In Persian with English Summary].
Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Lopes, J.I., Gonçalves, B.C., Ferreira, T.C., Correia, C.M., 2007. Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant and Soil. 292(2-1), 1.
Baura-Pena, M.P., Martínez-Lope, M.J., García-Clavel, M.E., 1991. Synthesis and characterization of a hydrated titanium (IV) oxide. Thermochimica Acta. 179, 89-97.
Burnett, S., Paul T., Iersel, M.V., 2005. Postgermination drenches with PEG-8000 reduce growth of salvia and marigolds. Horticultural Science. 40, 675-790.
Chaves, M.M., Oliveira, M.M., 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany. 55(407), 2365-2384.
FAO, 2017. FAO Hunger map. (www.fao.org)
Feizi, H., Kamali, M., Jafari, L., Moghaddam, P.R., 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 91(4), 506-511.
Ganjeali, A., Kafi, M., 2007. Genotypic differences for allometric relationships between root and shoot characteristics in Chickpea (Cicer arietinum L.). Pakistan Journal of Botany. 21, 1523-1531.
Gao, W.R., Wang, X.S., Liu, Q.Y., Peng, H., Chen, C., Li, J.G., Zhang, J.S., Hu, S.N., Ma, H., 2008. Comparative analysis of ESTs in response to drought stress in chickpea (Cicer arietinum L.). Biochemical and Biophysical Research Communications. 367(3), 578-583.
Haghighi, M., Daneshmand, B., 2013. Comparing the effects of titanium and nano-titanium on growth and photosynthetic changes of tomato in hydroponic culture. Journal of Science and Technology of Greenhouse Culture. 4(13), 73-80. [In Persian with English Summary].
Hamzei, J., Seyedi, M., 2014. Study of canopy growth indices in mono and intercropping of chickpea and barley under weed competition. Journal of Sustainable Agriculture and Production. 24, 75-90. [In Persian with English Summary].
Hashemi, D.E., Mousavi, M., MoallemI, N., Ghafariyan, M.M.H., 2016. Effect of nanoparticles of titanium dioxide (anatase) on physiological characteristics of strawberry (Fragaria ananassa cv queen elisa) in hydroponic condition. Journal of Plant Process and Function. 1-8. (In Persian with English Summary).
Hossinzadeh, S.R., Ganjeali, A., Salami, A., Ahmadpour, R., 2012. Effects of foliar application of methanol on growth and root characteristics of chickpea (Cicer arietinum L.) under drought stress. European Journal of Experimental Biology.12, 2.
Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., Modari, A., 2010. Effects of TiO2 NPs foliar spraying on the wheat under drought stress, Iranian Journal of Plant Eco- Physiology. 4, 295-301. [In Persian with English Summary].
Javadi, T., Bahramnejad, B., 2010. Eefect of water stress on growth and some biochemichal traits of three pear genotypes from kudrestan proviance. Iranian Horticultural Science.24(2), 327-335. [In Persian with English Summary].
Jazizadeh, E., Mortezanejhad, F., 2016. Effects of drought stress on physiological indices on cannis Chcorium intybus L. Journal of Plant Process and Function. 6(21), 279-290. [In Persian with English Summary].
Khater, M.S., Osman, Y.A.H., 2015. Influence of TiO2 nanoparticles on growth, chemical constituents and toxicity of fennel plant. Arab Journal of Nuclear Sciences and Applications. 48(4), 178-186.
Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G., 2014. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials. 246, 98-106.
Lei, Z., Mingyu, S., Chao, L., Liang, C., Hao, H., Xiao, W., Xiaoqing, L., Fan, Y., Fengqing, G., Fashui, H., 2007. Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research. 119(1), 68-76.
Leport, L., Turner, N.C., French, R.J., Barr, M.D., Duda, R., Davies, S.L., Tennant, D., Siddique, K.H.M., 1999. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. European Journal of Agronomy. 11(3-4), 279-291.
Liu, X.M., Zhang, F.D., Zhang, S.Q., He, X.S., Fang, R., Feng, Z., Wang, Y.J., 2005. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutrition and Fertilizer Science. 11, 14-18.
Lu, C., Zhang, C., Wen, J., Wu, G., Tao, M., 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science. 21(13), 171-178.
Mamyandi, M.M., Pirzad, A., Zardoshti, M.R., 2012. Effect of Nano-iron spraying at varying growth stage of sugar beet (Beta vulgaris L.) on the size of different plant parts. International Journal of Agriculture and Crop Sciences. 2(4), 740-745.
Mansori, M., Akbari, G., Mortazavian, S.M.M., 2017. The effect of nanoparticles of titanium dioxide sprayed on yield and yield components of different ecotype cumin in drought stress. Journal of Crops Improvement. 19(2), 461-473. (In Persian with English Summary).
Moaveni, P., Farahani, H.A., Maroufi, K., 2011. Effect of TiO2 nanoparticles spraying on barley (Hordem vulgare L.) under field condition. Advances in Environmental Biology. 5(8), 2220-2224.
Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., and Kumar, D.S., 2010 Nanoparticulate material delivery to plants. Plant Science. 179(3), 154-163.
Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H., Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17(5), 372-386.
Neumann, P.M., 2008. Coping mechanisms for crop plants in drought-prone environments. Annals of Botany.101(7), 901-907.
Nori, M., and Movaeni, P., 2016. Effect of titanium dioxide spraying on chlorophyll, yield and yield components of lentil. Research Journal of Legume. 8, 68-57.
Pandey, A.C., S. Sanjay, S., S. Yadav, R., 2010. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. Journal of Experimental Nanoscience. 5(6), 488-49
Qi, M., Liu, Y., Li, T., 2013. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological trace Element Research. 156(1-3), 323-328.
Qian, Y.L., Fry, J.D., Wiest, S.C., Upham, W.S., 1996. Estimating turfgrass evapotranspiration using atmometers and the Penman-Monteith model. Crop Science. 36(3), 699-704.
Rasouli, F., Abedini, F., Zahdi, M., 2016. The effect of Titanium nano dioxide on physiological particular and chlorophyll fluorescence parameters in Egg plant (Solanum melongena L.) under water deficit stress. Journal of Vegtable Science. (4)2, 51-37. [In Persian with English Summary].
Scherrer, P., 1912. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch (pp. 387-409). Springer, Berlin, Heidelberg.
Shao, H.B., Chu, L.B., Jaleel, C.A., Zho, C.H., 2008. Wtaer-deficit stress-induced anatomical change in higher plants. Compect Rendus Biologis. 331(3), 215-225.
Takallu, S., DavodI, D., Omidi, M., Ebrahimi, MA., Rouzbeh, F., Rasulnia, AR., 2013. The effect of titanium dioxide nanoparticles on barley cytogenetical index. Journal of Agricultural Biotechnology. 5(1), 13-26. [In Persian with English Summary].
Voet, D., Voet, J.G., Pratt, C.W., 2001. Fundamentals of Biochemistry Upgrade. New York, Wiley.
Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., Yang, P., 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research.110(2), 179-190.
Yusefzaei, F., Poorakbar, L., Farhadi, Kh., Molaei, R., 2017. The Effect of copper nanoparticles and copper chloride solution on germination and solution some morphological and physiological factors Ocimum basilicum L. Journal of Plant Science Reseearch. 30(1), 221-231. [In Persian with English Summary].
Zarafshar, M., Akbarinia, M., Askari, H., Hosseini, S.M., Rahaie, M., Struve, D., Gustavo G.S., 2014. Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear (Pyrus boisseriana). Biotechnology, Agronomy, Society and Enviroment. 18, 353-366.
Zarafshar, M., Akbarinia, M., Askari, H., Hosseini, S.M., Satarian, A., Niakan, N., 2018. Comprative effect of TiO2 and SiO2 nanoparticles on some morphological, physiological and biochemical responses to soil water deficit in seedlings of wild pear (Pyrus boisseriana). Journal of Applied Biology. 31(2), 101-118. [In Persian with English Summary].
Zare Meherjerdi, M., Bagheri, A., Bahrami, A.R., Nabati, J., Masoumi, A., 2016. Effect of drought stress on osmotic adjustment, proline and soluble sugars in root and shoot and relationship with drought tolerance in 12 genotypes of Chickpea (Cicer arietinum L.). Iran Agronomy Science. 47(3), 451-462. [In Persian with English Summary].
Zheng, L, Hong, F., Lu, S., Liu, C., 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological trace element research. 104, 83-91.
Zhu, H., Han, J., Xiao, J.Q., Jin, Y., 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring. 10, 713-717.