ارزیابی واکنش برخی ژنوتیپ‌های برنج (Oryza sativa L.) به تنش شوری در مرحله گیاهچه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان ، گرگان

2 استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج

چکیده

برنج از مهم‌ترین محصولات کشاورزی ایران و جهان است و شوری یک عامل محدود­کننده مهم در تولید این محصول است. در این آزمایش 11 ژنوتیپ­ برنج به‌صورت کرت­های خرده شده در قالب طرح پایه بلوک کامل تصادفی با 3 تکرار در تابستان 1391 در مزرعه دانشکده کشاورزی دانشگاه یاسوج، انجام گرفت. کرت اصلی تنش شوری در 4 سطح (0، 44،­ 88 و 132 میلی­ مولار) و کرت فرعی شامل 11 ژنوتیپ برنج (غریب، محلی ­یاسوج، چمپا و شهری ­لوداب، 304، لنجان­ عسکری، کامفیروز، دم­سیاه ممسنی، موسی­ طارم، حسن­ سرایی و دولار) بود. صفات مورد ارزیابی شامل شاخص­ های فلورسانس کلروفیل (به ترتیب F0 ، Fm ، Fv و ­Fv/Fm)، سبزینگی، قندهای محلول، پرولین و پروتئین برگ و عملکرد دانه بودند. نتایج حاصل از تجزیه واریانس نشان داد که صفات شاخص­های فلورسانس کلروفیل (به ترتیب F0 ، Fm ، Fv و ­Fv/Fm)، سبزینگی، قندهای محلول، پرولین و پروتئین برگ تحت تأثیر اثر متقابل شوری و ژنوتیپ قرار گرفتند. با افزایش شدت تنش، تجمع پرولین، پروتئین و قندهای محلول برگ در گیاهان تحت سطوح شوری افزایش یافت، ولی ژنوتیپ­ها از این نظر با هم اختلاف داشتند. افزایش سطح تنش شوری سبب کاهش محتوای نسبی کلروفیل و عملکرد دانه گردید. مقایسه میانگین­ های ژنوتیپ­ های برنج نشان داد که بیشترین عملکرد دانه مربوط به ژنوتیپ لنجان عسکری و کمترین آن به ژنوتیپ دولار تعلق داشت. در تجزیه خوشه ­ای با روش حداقل واریانس وارد در شرایط تنش شوری، ژنوتیپ­ها در 4 گروه قرار گرفتند و بالاترین فاصله ژنتیکی بین خوشه اول و چهارم مشاهده شد که می­توان از ژنوتیپ­های این دو خوشه برای برنامه اصلاحی مثل هتروزیس و تفکیک متجاوز استفاده کرد.

کلیدواژه‌ها


Agricultural Statistics, 2017. Annual Report. Ministry of Agriculture Press. https://www.maj.ir/Index.aspx. [In Persian]
Azizpour, K., Shakiba, M. R., Khosh Kholgh Sima, N. A., Alyari, H., Moghaddam, M., Esfandiari, E., Pessarakli, M., 2010. Physiological response of spring durum wheat genotypes to salinity. Journal of plant nutrition. 33, 859-873.
Dubey, R. D., Rani. M., 1989. Influence of NaCl salinity on growth and metabolic status of protein and amino acids in rice seedling. Agronomy Journal. 162, 67-72.
Fallah, A., Farahmanfar, E., Moradi, F., 2015. Effect of salt stress on some morphological characters of two rice cultivars during different growth stages at greenhouse. Applied Field Crops Research. 28, 175-182.
Hoagland, D.R., Arnon, D.I., 1950. The water-culture for growing plants without soil. California Agriculture Experimental Statistics Circular, 3-32.
Hosseineyan-Khoshrou, H., Bihamta, M.R., Soltani, A., Aghaei, M.J. 2011. Study and comparison of some biochemical characteristics of different genotypes of Aegilops tauschii Iran. Iranian Journal of Field Crop Science. 42, 661-649. [In Persian with English Summary].
Hosseini, S.J., Tahmasebi, Z., Pirdashti, H., 2012. Screening of rice (Oryza sativa L.) genotypes for NaCl tolerance at early seedling stage. International Journal of Agronomy and Plant Production. 8, 274-283.
Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M., 1992. Water stress induced changes in concentration of proline and total soluble sugars in modulated alfalfa (Medicago sativa L.) plants. Physiology of Plants. 84, 55-60.
IRRI. 2017. Stress and disease tolerance: Breeding for salt tolerance in rice. http://www.knowledgebank.irri.org/ricebreedingcourse/Breeding_for_salt_tolerance.htm.
IRRI. 2018. World rice statistics online query facilities. http://ricestat.irri.org:8080/wrsv3/entrypoint.htm.
Ismail, A.M., Horie, T., 2017. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annual Review of Plant Biology. 68, 405-434.
Javadipour, Z., 2012. Effect of salinity on germination and physiological characteristics of spring safflower (Charthamus tinctorius L.) MSc dissertation, Faculty of Agriculture, University Yasouj, 132p. [In Persian with English Summary]
Juan, M.R., Esteban, S., Pablo C.G., Luis, R. L., Rosa, M.R., Luis, R., 2002. Proline metabolism and NAD kinase activity in green bean plants subjected to cold-shock. Phytochemistry. 59, 473–478.
Kanawapee, N., Sanitchon, J., Lontom, W., Threerakulpisut. P., 2012. Evaluation of salt tolerance at the seedling stage in rice genotypes by growth performance, ion accumulation, proline and chlorophyll content. Plant and Soil. 358, 235-249.
Kao, W.Y., Tsai, T., Tsai, H., Shih, C.N., 2006. Response of three glycine species to salt stress. Environmental and Experimental Botany. 56, 120–125.
Krishnamurthy, S.L., Gautam, R.K., Sharma, P.C., Sharma, D.K., 2016. Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crops Research. 190, 26-33.
Liu, C., Zhang, J., 2000. Heat stress injury in relation to membrane lipid per oxidation in creeping. Crop Science. 151, 135-143.
Majidi. M., Karimzadeh, G., Mahfoozi, S., 2008. Effects of low temperature and exogenous calcium on the quantum efficiency of photosystem II (Fv/Fm) and relative content of chlorophyll in cold susceptible and tolerant wheat cultivars. Pajouhesh & Sazandegi. 77, 175-181. [In Persian with English Summary].
Majidi-Mehr, A., Amiri-Fahliani, R., and Masoumi-Asl, A., 2014. Study of biochemical and chemical traits of different rice genotypes under salinity stress. Cereal Research. 4(1), 45-58. [In Persian with English Summary]
Majidi-Mehr, A., Khoshchereh, H., 2016. Study of different genotypes of rice using multivariate analysis. Journal of Plant Eco physiology. 30, 118-128. [In Persian with English Summary].
Mardani-Nezhad, S.H., Vazirpour, M., 2007. The study of seed viability, amount of proline and chlorophyll of local genotypes of rice under salt stress. Agroecology Journal. 3, 69-80. [In Persian with English Summary].
Mighani, F., Ebrahimzadeh, H., 2003. Effect salinity stress on carbohydrates wheat. Journal of Sciences University of Tehran. 2, 257-265. [In Persian].
Musavizadeh, Z.S., Najafi-Zarini, H., Hashemi-Petroudi, S. H.R., Kazemitabar, S.K., 2018. Assessment of proline, chlorophyll and malondialdehyde in sensitive and tolerant rice (Oryza sativa L.) cultivars under salt stress conditions. Journal of Crop Breeding, 10, 28-35.
Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., Moradian, S., 2017. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators. 83, 482-494.
Nemati, I., Moradi, F., Esmaeili, M.A., Gholizadeh, S., 2009. Ions and total soluble carbohydrates compartmentation in different leaves of rice genotypes in response to salt stress. Journal of Plant Production. 16, 143-158. [In Persian with English Summary].
Paquine, F., Lechasseur, P., 1979. Observations sure one method dosage 1a Libra-dens les de plants. Canadian Journal of Botany. 57, 1851-1854.
Rachoski, M., Gazquez, A., Calzadilla, P., Bezus, R., Rodriguez, A., Ruiz, O., Maiale, S., 2015. Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress. Acta Physiologiae Plantarum. 37, 117-128.
Rahman, M.A., Thomson, M.J., Shah-E-Alam, M., Ocampo, M., Egdane, J., Ismail, A.M., 2016. Exploring novel genetic sources of salinity tolerance in rice through molecular and pH ysiological characterization. Annals of Botany. 117, 1083-1097. [In Persian].
Saeidipour, S. 2015. Salinity effects on osmotic potential, soluble proteins and carbohydrates concentration in rice (Oryza sativa) genotypes at seedling stage. Agronomy Journal (Pajouhesh & Sazandegi). 108, 1-8. [In Persian with English Summary].
Sairam, R. K., Tyagi, A., 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science. 86, 407-421.
Santos, C.V., 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulture. 103, 93–99.
SAS Institute. 2002. SAS user’s guide: Statistics. Ver 9.1. SAS Institute Cary, NC.
Singh, D.P., Sarkar, R.K., 2014. Distinction and characterization of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Functional Plant Biology. 41, 727-736.
StatGraphics. 2019. Statistical analysis and data visualization system (revised version). Stat Point Technologies, Incorporation.
Vendruscolo, E.C.G., Schuster, I., Pilegg, M., Scapim, C.A., Molinari, H.B.C., Marur, C.J., Vieira, L.G.E., 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology. 164(10), 1367-1376.
Zhang, Z.H., Liu, Q., Song, H.X., Rong, X.M., Abdelbagi, M.I., 2010. Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. African Journal of Agricultural Research. 7, 19-27.
Zhao, G.Q., Ma, B.L., Ren, C.Z., 2007. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Science. 41, 123-13.