نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیوتکنولوژی گیاهی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استاد گروه زراعت و اصلاح نباتات، دکترای ژنتیک، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دکترای بیوتکنولوژی کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

در این مطالعه، فعالیت آنتی­اکسیدانی و تغییرات بیان ژن­های مرتبط با شبکه پیام­رسان و تنظیمی پاسخ‌دهنده به تنش شوری شامل G-types-LecRLK، CIPK20، HSFA1a و C3H-ZF در برگ­های گیاه هالوفیت Aeluropus littoralis تحت تنش شوری مورد بررسی قرار گرفت. قلمه­ های گیاهی در شرایط هیدروپونیک کشت و پس از یک ماه تحت تیمارهای کنترل (محلول هوگلند بدون افزودن کلریدسدیم)، 200 و 400 میلی­ مولار نمک کلریدسدیم قرار گرفتند. پس از 72 ساعت تیمار، نمونه­ های برگی از گلدان­ ها جمع­ آوری شد و محتوای پراکسیدهیدروژن و فعالیت آنزیم آسکوربات­ پراکسیداز اندازه­ گیری و تغییرات بیان ژن­ های ذکرشده با استفاده از روش qRT-PCR ارزیابی شد. نتایج نشان داد که فعالیت آنزیم آسکوربات­ پراکسیداز در هر دو غلظت 200 و 400 میلی ­مولار به‌طور معنی­ داری افزایش یافت (0.05>P). بیان ژن LecRLK تغییر چندانی را نسبت به شاهد نشان نداد و بیان ژن CIPK20 به ترتیب 7 و 16 برابر نسبت به شاهد در هر دو تیمار 200 و 400 میلی ­مولار کلریدسدیم کاهش یافت. بیان ژن HSFA1a با مقدار نمک رابطه مثبت داشت (0.05>P)  و با افزایش غلظت نمک افزایش چشمگیری نشان داد. بیان ژن C3H-ZF به‌طور معنی­ داری در هر دو تیمار 200 و 400 میلی­ مولار نسبت به شاهد کاهش یافت (0.05>P). نتایج نشان داد که الگوی بیان ژن­های موردمطالعه تحت شرایط تنش شوری می­تواند به نقش هر ژن، غلظت نمک و مدت‌زمان تنش مربوط باشد.

کلیدواژه‌ها

 
Bogamuwa, S., Jang, J.C., 2016. Plant tandem CCCH zinc finger proteins interact with ABA, drought, and stress response regulators in processing-bodies and stress granules. PLoS One, 11, e0151574.
Busch, W., Wunderlich, M., Schöffl, F., 2005.Identification of novel heat shock factor‐dependent genes and biochemical pathways in Arabidopsis thaliana. The Plant Journal. 41, 1-14.
Cai‐Hong, P., Su‐Jun, Z., Zhi‐Zhong, G. and Bao‐Shan, W., 2005. NaCl treatment markedly enhances H2O2‐scavenging system in leaves of halophyte Suaeda salsa. Physiologia Plantarum. 125, 490-499.
Chen, L., Wang, Q.Q., Zhou, L., Ren, F., Li, D.D., Li, X.B., 2013. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Molecular Biology Reports. 40, 4759-4767.
Dazy, M., Jung, V., Férard, J.F., Masfaraud, J.F., 2008. Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implications in site restoration. Chemosphere. 74, 57-63.
Deng, K., Wang, Q., Zeng, J., Guo, X., Zhao, X., Tang, D., Liu, X., 2009. A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response. Journal of Plant Biology. 52, 493-500.
Ganie, S.A., Ahammed, G.J. and Wani, S.H., 2020. Vascular plant one zinc-finger (VOZ) transcription factors: novel regulators of abiotic stress tolerance in rice (Oryza sativa L.). Genetics Resource Crop and Evolution. 67, 799–807.
Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology. 59, 309-314.
Golldack, D., Li, C., Mohan, H., Probst, N., 2014. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in Plant Science. 5, 151. doi:10.3389/fpls.2014.00151. eCollection.
Guo, M., Liu, J.H., Ma, X., Luo, D.X., Gong, Z.H., Lu, M.H., 2016. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science. 7, 114. doi: 10.3389/fpls.2016.00114. eCollection.
Guo, Z., Ou, W.Z., Lu, S.Y., Zhong, Q., 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry. 44, 828-836.
Hashemipetroudi, S.H., Nematzadeh, G., Ahmadian, G., Yamchi, A., Kuhlmann, M., 2014. Expression analysis of salt stress related expressed sequence tags (ESTs) from Aeluropus littoralis by quantitative real-time PCR. Bioscience Biotechnology Research Communications. 9, 445-456.
HediyeSekmen, A., Türkan, İ., Takio, S., 2007. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt‐tolerant Plantago maritima and salt‐sensitive Plantago media. Physiologia Plantarum. 131, 399-411‏.
Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I., Zamecnik, P. C., 1958. A soluble ribonucleic acid intermediate in protein synthesis. Journal of Biological Chemistry, 231, 241-257.‏
Jan, A., Maruyama, K., Todaka, D., Kidokoro, S., Abo, M., Yoshimura, E., Shinozaki, K., Nakashima, K., Yamaguchi-Shinozaki, K., 2013. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiology. 161, 1202-1216.
Jiang, M., Jiang, J.J., Miao, L.X., He, C.M., 2017. Over-expression of a C3H-type zinc finger gene contributes to salt stress tolerance in transgenic broccoli plants. Plant Cell, Tissue and Organ Culture (PCTOC). 130, 239-254.
Jithesh, M.N., Prashanth, S.R., Sivaprakash, K.R., Parida, A., 2006. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk) Vierh by mRNA analysis. Plant Cell Reports. 25, 865-876.
Khaliq, A., Zia‐ul‐Haq, M., Ali, F., Aslam, F., Matloob, A., Navab, A., Hussain, S., 2015. Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. CLEAN–Soil, Air, Water43, 1248-1258.
Kumar, R.R., Sharma, S.K., Gadpayle, K.A., Singh, K., Sivaranjani, R., Goswami, S., Raj, D.R., 2012.Mechanism of action of hydrogen peroxide in wheat thermotolerance-interaction between antioxidant isoenzymes, proline and cell membrane. African Journal of Biotechnology. 11, 14368-14379.
Lee, S.J., Jung, H.J., Kang, H., Kim, S.Y., 2012. Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant and Cell Physiology. 53, 673-686.
Li, C.H., Wang, G., Zhao, J.L., Zhang, L.Q., Ai, L.F., Han, Y.F., Sun, Y., 2014. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. The Plant Cell. 26, 2538-2553.
Liu, Y., Zhang, C., Chen, J., Guo, L., Li, X., Li, W., Yu, Z., Deng, J., Zhang, P., Zhang, K., Zhang, L., 2013. Arabidopsis heat shock factor HSFA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiology and Biochemistry. 64, 92-98.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 4, 402-408.
Loreto, F., Velikova, V., 2001. Isoprene produced by leaves protects the photosynthetic apparatus againstozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127, 1781-1787.
Meloni, D.A., Oliva, M.A., Martinez, C.A., Cambraia, J., 2003.Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49, 69-76.
Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., Scharf, K.D., 2001. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes & Development, 16, 1555-1567.
Modarresi, M., Moradian, F., and Nematzadeh, G.A., 2014. Antioxidant responses of halophyte plant Aeluropus littoralis under long-term salinity stress. Biologia 69: 478-483.
Ogawa, D., Yamaguchi, K., Nishiuchi, T., 2007. High-level overexpression of the Arabidopsis HSFA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Journal of Experimental Botany, 58, 3373-3383.
Pandey, G.K., Kanwar, P., Singh, A., Steinhorst, L., Pandey, A., Yadav, A.K., Tokas, I., Sanyal, S.k., Kim, B.G., Lee, S.C., Cheong, Y.H., 2015. CBL-interacting protein kinase, CIPK21, regulates osmotic and salt stress responses in Arabidopsis. Plant Physiology. 169, 780-792.
Sun, X.L., Yu, Q.Y., Tang, L.L., Ji, W., Bai, X., Cai, H., Liu, X.F., Ding, X.D., Zhu, Y.M., 2012. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. Journal of Plant Physiology. 170, 505-515.
Sofo, A., Scopa, A., Nuzzaci, M. and Vitti, A., 2015. Ascorbate Peroxidase and catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. International Journal of Molecular Sciences. 12, 13561-13578.
Vaid, N., Pandey, P., Srivastava, V.K., Tuteja, N., 2008. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Molecular Biology. 88, 193-206.
Wang, D., Guo, Y., Wu, C., Yang, G., Li, Y., Zheng, C., 2008. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics. 9, 44. Doi: 10.1186/1471-2164-9- 44
Xiong, L., Schumaker, K. S., Zhu, J.K., 2002. Cell signaling during cold, drought, and salt stress. The Plant cell. 14, 165-183.
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., Oda, K., [2008. Expression of rice heat stress transcription factor OsHSFA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta. 227, 957-967.
Younesi-Melerdi, E., Nematzadeh, G. A., Pakdin-Parizi, A., Bakhtiarizadeh, M. R. Motahari, S. A., 2020. De novo RNA sequencing analysis of Aeluropus littoralis halophyte plant under salinity stress. Scientific Reports. 10, 1-14.
Zhu, J. K., 2016. Abiotic stress signaling and responses in plants. Cell. 167, 313-324
Zouari, N., Saad, R.B., Legavre, T., Azaza, J., Sabau, X., Jaoua, M., Masmoudi, K., Hassairi, A., 2007. Identification and sequencing of ESTs from the halophyte grass Aeluropuslittoralis, Gene. 404, 61-69.