اثر تنش شوری بر ویژگی‌های ریشه و توزیع یونی شش رقم گندم نان (.Triticume aestivum L)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه تهران، کرج

2 پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران، کرج

چکیده

به منظور بررسی اثر شوری بر برخی ویژگی‌های ریشه و توزیع یونی، پژوهشی به صورت فاکتوریل خردشده در زمان در سه تکرار با دو سطح شوری 2‌ (شاهد) و dS m-116‌ (شوری) بر روی شش رقم گندم (اترک، پیشتاز، چمران، روشن، قدس و شیراز) و در دوسطح برداشت (دوهفته و سه هفته پس از کاشت) در گلخانه اجرا گردید. صفات وزن خشک ریشه، وزن خشک شاخساره، نسبت وزن خشک شاخساره به وزن خشک ریشه، طول و حجم کل ریشه، غلظت سدیم، پتاسیم و نسبت پتاسیم به سدیم در ریشه و شاخساره، تعداد ریشه محوری و جانبی اندازه‌گیری شد. نتایج نشان داد در هفته دوم و سوم، شوری موجب کاهش وزن خشک ریشه، شاخساره، طول، حجم ریشه و تعداد ریشه جانبی اولیه در تمام رقم‌ها شد. چمران و روشن در تیمار شاهد به‌ترتیب توانایی بالایی در تولید وزن خشک ریشه و شاخساره داشتند. در شوری در هر دو هفته، روشن از بیشترین وزن خشک ریشه (14 و 18 میلی‌گرم بر بوته) و حجم کل ریشه (به‌ترتیب 78 و 93 میلی‌مترمکعب بر بوته) برخوردار بود. قدس با بیشترین شدت افت در هر دو هفته (به ترتیب %54 و 50%) کمترین میزان وزن خشک ریشه را دارا بود. کمترین میزان حجم کل ریشه در شوری هفته دوم وسوم به‌ترتیب مربوط به قدس و شیراز (40 و 59 میلی‌مترمکعب بر بوته) بود. قدس با ظرفیت بالای تولید ریشه در شاهد، کاهش شدیدی در تولید ریشه‌های جانبی و مجموع طول ریشه در اثر شوری نشان داد. همچنین روشن با وجود داشتن بیشترین غلظت سدیم شاخساره در تیمار شوری، به‌دلیل حفظ یون پتاسیم در ریشه و شاخساره، توانست بیشترین میزان شاخساره را تولید کند. بر اساس صفات ارزیابی شده و واکنش رقم‌های مورد بررسی به شوری، متحمل بودن روشن و حساس بودن قدس به شوری، در این مرحله از رشد مطابق با گزارش‌های قبلی است.

کلیدواژه‌ها


Akram, M., Malik, M. A., Ashraf, M.Y., Saleem, M.F., Hussain, M., 2007. Competitive seedling growth and K/Na ratio in different maize (Zea mays L.) hybrids under salinity stress. Pakistan Journal of Botany. 39(7), 2553-2563.
Bates, T.R., Lynch, J.P., 2000. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. American Journal of Botany. 87(7), 964-970.
Burssens, S., Himanen, K., Van de Cotte, B., Beeckman, T., Van Montagu, M., Inzé, D., Verbruggen, N., 2000. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta. 211(5), 632-640.
Chhipa, B., Lal, P., 1995. Na/K ratios as the basis of salt tolerance in wheat. Australian Journal of Agricultural Research. 46(3), 533-539.
Davenport, R., James, R.A., Zakrisson-Plogander, A., Tester, M., Munns, R., 2005. Control of sodium transport in durum wheat. Plant Physiology. 137(3), 807-818.
Dvořák, J., Gorham, J., 1992. Methodology of gene transfer by homoeologous recombination into Triticum turgidum: transfer of K+/Na+ discrimination from Triticum aestivum. Genome. 35(4), 639-646.
Erdei, L., Taleisnik, E., 1993. Changes in water relation parameters under osmotic and salt stresses in maize and sorghum. Physiologia Plantarum. 89(2), 381-387.
Fakhri, S., Rahnama, A., Meskarbashi, M., 2016. Effect of salinity stress on growth and distributions of tissue-specific ion in wheat (Triticum aestivum L.) cultivars. Iranian Journal of Crop Sciences. 18(4). 302-318 [In Persian with English summary].
Francois, L.E., Grieve, C.M., Maas, E.V., Lesch, S.M., 1994. Time of salt stress affects growth and yield components of irrigated wheat. Agronomy Journal. 86(1), 100-107.
Fricke, W., Bijanzadeh, E., Emam, Y., Knipfer, T., 2014. Root hydraulics in salt-stressed wheat. Functional Plant Biology. 41(4), 366-378.
Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C.A., Fang, S., 2012. GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biology. 12(1), 116.
García-Lidón, A., Ortiz, J.M., García-Legaz, M.F., Cerda, A., 1998. Role of rootstock andscion on root and leaf ion accumulation in lemon trees grown under saline conditions. Fruits. 2(53), 89-97.
Greenway, H., Munns, R., 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology. 31(1), 149-190.
Jin, K., Shen, J., Ashton, R. W., White, R. P., Dodd, I. C., Phillips, A. L., 2015. The effect of impedance to root growth on plant architecture in wheat. Plant and Soil. 392(1-2), 323-332.
Kingsbury, R.E., Epstein, R., Pearcy, W., 1984. Physiological responses to salinity in selected lines of wheat. Plant physiology. 74,417-425
Koevoets, I.T., Venema, J.H., Elzenga, J.T., Testerink, C., 2016. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science. 7, 1335.
Malamy, J., 2005. Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment. 28(1), 67-77.
Malamy, J.E., Benfey, P.N., 1997. Down and out in Arabidopsis: the formation of lateral roots. Trends in plant science. 2(10), 390-396.
Mittal, R., Dubey, R.S., 1991. Behaviour of peroxidases in rice: changes in enzyme activity and isoforms in relation to salt tolerance. Plant Physiology and Biochemistry. 29, 31–40 (France).
Munns, R., James, R.A., 2003. Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil. 253(1), 201-218.
Munns, R., Termaat, A., 1986. Whole-plant responses to salinity. Functional Plant Biology. 13(1), 143-160.
Munns, R.M. Tester., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651-681.
Nibau, C., Gibbs, D., Coates, J., 2008. Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist. 179(3), 595-614.
Nour, A.-E.M., Weibel, D., 1978. Evaluation of root characteristics in grain sorghum. Agronomy Journal. 70(2), 217-218.
Omielan, J., Epstein, E., Dvořák, J., 1991. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome. 34(6), 961-974.
Poustini, K., Siosemardeh, A., 2004. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Research. 85(2), 125-133.
Rahnama, A., Munns, R., Poustini, K., Watt, M., 2011. A screening method to identify genetic variation in root growth response to a salinity gradient. Journal of Experimental Botany. 62(1), 69-77.
Rahnama, A., Poustini, K., Tavakkol Afshari, R., Ahmadi, A., Alizadeh, H., 2011. Growth properties and ion distribution in different tissues of bread wheat genotypes (Triticum aestivum L.) differing in salt tolerance. Journal of Agronomy and Crop Science. 197(1), 21-30.
Robin, A.H.K., Matthew, C., Uddin, M.J., Bayazid, K.N., 2016. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. Journal of Experimental Botany. 67(12), 3719-3729.
Saqib, M., Akhtar, J., Qureshi, R.H., 2004. Pot study on wheat growth in saline and waterlogged compacted soil: II. Root growth and leaf ionic relations. Soil and Tillage Research. 77(2), 179-187.
Schachtman, D., Munns, R., 1992. Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Functional Plant Biology. 19(3), 331-340.
Shelden, M.C., Roessner, U., Sharp, R.E., Tester, M., Bacic, A., 2013. Genetic variation in the root growth response of barley genotypes to salinity stress. Functional Plant Biology. 40(5), 516-530.
Tavakoli, M., Poustini, K., Alizadeh, H., 2016. Proline Accumulation and Related Genes in Wheat Leaves under Salinity Stress. Journal of Agricultural Science and Technology. 18(3), 707-716. [In Persian with English summary].
Wang, Y., Li, K., Li, X., 2009. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. Journal of Plant Physiology. 166(15), 1637-1645.
Watt, M., Magee, L.J., McCully, M.E., 2008. Types, structure and potential for axial water flow in the deepest roots of field‐grown cereals. New Phytologist. 178(1), 135-146.
Weaver, J.E., 1919. The Ecological Relations of Roots. Carnegie Institute of Washington, Publication 286, Washington.
Wei, W., Bilsborrow, P.E., Hooley, P., Fincham, D.A., Lombi, E., Forster, B.P., 2003. Salinity induced differences in growth, ion distribution andpartitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant and Soil. 250(2), 183-191.
Weimberg, R., 1987. Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum. 70(3), 381-388.