نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استادیار بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران

چکیده

DEVIL‌ها پپتیدهای کوچکی هستند که نقش مهمی در رشد و نمو گیاهان داشته و در کنترل پاسخ‌های گیاه نسبت به تغییرات محیطی حاصل از تنش‌ها مؤثر می‌باشند. در این تحقیق به بررسی تغییرات بیان چهار ژن AlDVL1، AlDVL2، AlDVL3 و AlDVL6 به همراه ژن‌های مرجع اختصاصی بافت برگ شامل AlGTF و AlU2SnRNp و ژن‌های مرجع اختصاصی برای بافت ریشه شامل AlPRS3 و AlEF1a در گیاه شورزی آلوروپوس لیتورالیس پرداخته شد. گیاهان تحت تنش شوری 600 میلی‌مولار کلریدسدیم و در پنج دوره زمانی صفر (کنترل)، 3، 6، 48 ساعت و یک هفته قرار گرفتند. نتایج تحقیق نشان داد که الگوی بیانی ژن‌های AlDVL در اندام ریشه و برگ به شکل معنی‌داری تحت‌تأثیر تنش شوری قرار گرفته که این افزایش بیان در تمامی ژن‌ها به جز ژن AlDVL6، در اندام ریشه بیشتر از برگ گیاه بود. در بین ژن‌های مورد مطالعه، بیشترین افزایش بیان برای ژن AlDVL2 در بافت برگ در زمان 48 ساعت (12.12) و در اندام ریشه در زمان یک هفته (14.83) مشاهده شد. همچنین، الگوی رفتاری ژن‌ها در بافت‌های ریشه و برگ در حالت افزایش و یا کاهش بیان نسبت به یکدیگر تفاوت داشته و وابسته به بافت بود. بررسی همبستگی بیان ژن‌ها بیانگر تغییرات الگوی رفتاری بیان ژن‌‌ها در بافت‌های مختلف بود به‌طوری‌که همبستگی بیان ژن AlDVL6 و AlDVL3 در بافت برگ و ریشه به‌صورت منفی و معنی‌دار (0.6-) بود که نشان‌دهنده ارتباط معکوس بیان ژن در این دو بافت بوده است. با توجه به ماهیت گیاهان شورزی در تحمل شوری محیط و نیز تغییر بیان ژن‌های مورد مطالعه پس از اعمال تنش شوری، می‌توان به نقش احتمالی این ژن‌ها در افزایش قدرت تحمل گیاه اشاره نمود.

کلیدواژه‌ها

 
Agarwal, M., Shrivastava, N., Padh, H., 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports. 27, 617-631.
Aglawe, S., Fakrudin, B., Patole, C., Bhairappanavar, S., Koti, R., Krishnaraj, P., 2012. Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum. Physiology and Molecular Biology of Plants. 18, 287-300.
Andrews, S.J., Rothnagel, J.A., 2014. Emerging evidence for functional peptides encoded by short open reading frames. Nature Reviews Genetics. 15, 193.
Azri, W., Barhoumi, Z., Chibani, F., Borji, M., Bessrour, M., Mliki, A., 2016. Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. Functional Plant Biology. 43, 1028-1047.
Barhoumi, Z., 2019. Physiological response of the facultative halophyte, Aeluropus littoralis, to different salt types and levels. Plant Biosystems. 153, 298-305.
Barhoumi, Z., Djebali, W., Chaïbi, W., Abdelly, C., Smaoui, A., 2007. Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. Journal of Plant Research. 120, 529-537.
Barzegargolchini, B., Movafeghi, A., Dehestani, A., Mehrabanjoubani, P., 2017. Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. Journal of Plant Physiology. 218, 127-134.
Chien, P.S., Nam, H.G., Chen, Y.R., 2015. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. Journal of Experimental Botany. 66, 5301-5313.
Cui, Y., Li, M., Yin, X., Song, S., Xu, G., Wang, M., Li, C., Peng, C., Xia, X., 2018. OsDSSR1, a novel small peptide, enhances drought tolerance in transgenic rice. Plant Science. 270, 85-96.
Czyzewicz, N., Yue, K., Beeckman, T., De Smet, I., 2013. Message in a bottle: small signalling peptide outputs during growth and development. Journal of Experimental Botany. 64, 5281-5296.
De Coninck, B., De Smet, I., 2016. Plant peptides – taking them to the next level. Journal of Experimental Botany. 67, 4791-4795.
Delay, C., Imin, N., Djordjevic, M.A., 2013. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. Journal of Experimental Botany. 64, 5383-5394.
Faraji, S., Najafi-Zarrini, H., Hashemi-Petroudi, S., Ranjbar, G., 2017. AlGLY I gene implicated in salt stress response from halophyte Aeluropus littoralis. Russian Journal of Plant Physiology. 64, 850-860.
Fatemi, F., Hashemipetroudi, S.H., Nematzadeh, G.A., Askari, H., Abdollahi, M.R., 2019. Exploiting differential gene expression to discover ionic and osmotic-associated transcripts in the halophyte grass Aeluropus littoralis. Biological Procedures Online. 21, 14.
Ghorbani, H.R., Samizadeh Lahiji, H., Nematzadeh, G.A., 2017. Expression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition. Journal of Plant Molecular Breeding. 5, 19-30.
Gulzar, S., Khan, M.A., Ungar, I.A., 2003. Effects of salinity on growth, ionic content, and plant–water status of Aeluropus lagopoides. Communications in Soil Science and Plant Analysis. 34, 1657-1668.
Guo, P., Yoshimura, A., Ishikawa, N., Yamaguchi, T., Guo, Y., Tsukaya, H., 2015. Comparative analysis of the RTFL peptide family on the control of plant organogenesis. Journal of Plant Research. 128, 497-510.
Hashemipetroudi, S.H., Nematzadeh, G.A., Ahmadian, G.R., Yamchi, A., Kuhlmann, M., 2016a. Expression analysis of salt stress related expressed sequence tags (ESTs) from Aeluropus littoralis by quantitative real-time PCR. Bioscience Biotechnology Research Communications. 9, 445-456.
Hashemipetroudi, S.H., Nematzadeh, G.A., Ahmadian, G.R., Yamchi, A., Kuhlmann, M., 2016b. Identification and validation of Aeluropus littoralis reference genes for Quantitative Real-Time PCR Normalization. Journal of Biological Research-Thessaloniki. 23, 18.
Hashemipetroudi, S.H., Nematzadeh, G.A., Askari, H., Ghahary, S., 2014. Involvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis. Journal of Plant Molecular Breeding. 2, 56-67.
Hashemipetroudi, S.H., Nematzadeh, G.A., Askari, H., Ghasemi, Y., 2012. Pattern of DNA cytosine methylation in Aeluropus littoralis during temperature stress. Journal of Plant Molecular Breeding. 1, 16-24.
Hashemipetroudi, S.H., Nematzadeh, G.A., Kuhlmann, M., 2019. Identification and analysis of a DEVIL paralog gene cluster in Aeluropus littoralis by comparative genomic approach. Crop Bitechnology. 9, 79-92.
Jain, M., Nijhawan, A., Tyagi, A.K., Khurana, J.P., 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications. 345, 646-651.
Jam, M., Alemzadeh, A., Tale, A.M., Esmaeili-Tazangi, S., 2014. Heavy metal regulation of plasma membrane H+-ATPase gene expression in halophyte Aeluropus littoralis. Molecular Biology Research Communications. 3, 129.
Li, X., Han, H., Chen, M., Yang, W., Liu, L., Li, N., Ding, X., Chu, Z., 2017. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice. Plant Molecular Biology. 93, 21-34.
Marshall, E., Costa, L.M., Gutierrez-Marcos, J., 2011. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell–cell communication in plant reproduction and development. Journal of Experimental Botany. 62, 1677-1686.
Matsubayashi, Y., 2014. Posttranslationally modified small-peptide signals in plants. Annual Review of Plant Biology. 65, 385-413.
Modarresi, M., Nematzadeh, G., Moradian, F., Alavi, S., 2012. Identification and cloning of the Cu/Zn superoxide dismutase gene from halophyte plant Aeluropus littoralis. Russian Journal of Genetics. 48, 118-122.
Nakaminami, K., Okamoto, M., Higuchi-Takeuchi, M., Yoshizumi, T., Yamaguchi, Y., Fukao, Y., Shimizu, M., Ohashi, C., Tanaka, M., Matsui, M., 2018. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proceedings of the National Academy of Sciences. 115, 5810-5815.
Narita, N.N., Moore, S., Horiguchi, G., Kubo, M., Demura, T., Fukuda, H., Goodrich, J., Tsukaya, H., 2004. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. The Plant Journal. 38, 699-713.
Pearce, G., Strydom, D., Johnson, S., Ryan, C.A., 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 253, 895-897.
Qi, J., Yu, S., Zhang, F., Shen, X., Zhao, X., Yu, Y., Zhang, D., 2010. Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Molecular Biology Reporter. 28, 597-604.
Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology. 133, 1755-1767.
Saad, R.B., Halima, N.B., Ghorbel, M., Zouari, N., Romdhane, W.B., Guiderdoni, E., Al-Doss, A., Hassairi, A., 2018. AlSRG1, a novel gene encoding an RRM-type RNA-binding protein (RBP) from Aeluropus littoralis, confers salt and drought tolerance in transgenic tobacco. Environmental and Experimental Botany. 150, 25-36.
Silverstein, K.A., Moskal Jr, W.A., Wu, H.C., Underwood, B.A., Graham, M.A., Town, C.D., Vandenbosch, K.A., 2007. Small cysteine‐rich peptides resembling antimicrobial peptides have been under‐predicted in plants. The Plant Journal. 51, 262-280.
Valdivia, E.R., Hertweck, K.L., Cho, S.K., C. Walker, J., 2013. DVL/RTFL. In: Kastin, A. (ed.), Handbook of Biologically Active Peptides. Academic Press, San Diego, CA, USA, pp. 15-19.
Vanstraelen, M., Benková, E., 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology. 28, 463-487.
Wang, G., Zhang, G., Wu, M., 2016. CLE peptide signaling and crosstalk with phytohormones and environmental stimuli. Frontiers in Plant Science. 6, 1211.
Wen, J., Lease, K.A., Walker, J.C., 2004. DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. The Plant Journal. 37, 668-677.
Wen, J., Walker, J., 2006. DVL peptides are involved in plant development. In: Kastin, A. (ed.), Handbook of Biologically Active Peptides. Academic Press, San Diego, CA, USA, pp. 17-22.
Zouari, N., Saad, R.B., Legavre, T., Azaza, J., Sabau, X., Jaoua, M., Masmoudi, K., Hassairi, A., 2007. Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene. 404, 61-69.