نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استاد گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دانشجوی دکتری اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 گروه ژنتیک مولکولی، مؤسسه ژنتیک گیاهی و تحقیقات گیاهان زراعی لیبنیز (IPK)، آلمان

چکیده

فاکتورهای شوک حرارتی (Heat Shock Factors)، نقش مهمی در پاسخ به تنش‌های زیستی و غیرزیستی در یوکاریوت‌ها ایفا می‌نمایند. هدف از اجرای این تحقیق، شناسایی ژن‌های فاکتور رونویسی AlHSF در گیاه هالوفیت آلوروپوس لیتورالیس (Aeluropus littoralis) می‌باشد. بدین منظور شناسایی و تعیین مشخصه‌سازی ژن‌ها، ساختار ژنی، آنالیز موتیف‌های پروتئینی و روابط فیلوژنتیکی خانواده ژنی AlHSF مدنظر قرار گرفت. آنالیز الگوی بیان این ژن‌ها در دو بافت برگ و ریشه، تحت شرایط تنش شوری و شرایط ریکاوری، با استفاده از داده‌های RNA-seq صورت پذیرفت. بر اساس توالی‌های ژنومی A. littoralis، 11 ژن AlHSF غیرتکراری و منحصربفرد شناخته شدند. تمام 11 فاکتور رونویسی AlHSFs، بر اساس همولوژی با آرابیدوپسیس، به سه دسته (A، B و C) تقسیم شدند. بر اساس داده‌های RNA-seq، الگوی بیان ژن‌های AlHSF در بافت‌های برگ و ریشه تحت شرایط تنش شوری و ریکاوری، متفاوت بود. سطح بیان متفاوت این ژن‌ها، می‌تواند به عملکردهای مولکولی و مکانیسم‌های تنظیمی متفاوت در کنترل فعالیت این ژن‌ها مرتبط باشد. یافته‌های این تحقیق، ضمن ارائه خصوصیات عملکردی ژن‌های AlHSF، پایه‌ای برای تحقیقات کاربردی آینده در مورد نقش بیولوژیکی آن‌ها در تحمل گیاه آلوروپوس لیتورالیس به تنش‌های زیستی و غیرزیستی، فراهم می‌نماید.

کلیدواژه‌ها

Bechtold, U., Albihlal, W.S., Lawson, T., Fryer, M.J., Sparrow, P.A., Richard, F., Persad, R., Bowden, L., Hickman, R., Martin, C., 2013. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. Journal of Experimental Botany. 64(11), 3467-3481.
Chauhan, H., Khurana, N., Agarwal, P., Khurana, P., 2011. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Molecular Genetics and Genomics. 286(2), 171.
Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., 2004. WebLogo: a sequence logo generator. Genome Research. 14(6), 1188-1190.
Damberger, F.F., Pelton, J.G., Harrison, C.J., Nelson, H.C., Wemmer, D.E., 1994. Solution structure of the DNA‐binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Science. 3(10), 1806-1821.
De Castro, E., Sigrist, C.J., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., Hulo, N., 2006. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research. 34, 362-365.
Döring, P., Treuter, E., Kistner, C., Lyck, R., Chen, A., Nover, L., 2000. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. The Plant Cell. 12(2), 265-278.
Dossa, K., Diouf, D., Cissé, N., 2016. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Frontiers in Plant Science. 7, 15-22.
Faraji, S., Najafi-Zarrini, H., Hashemi-Petroudi, S., Ranjbar, G., 2017a. AlGLY I gene implicated in salt stress response from halophyte Aeluropus littoralis. Russian Journal of Plant Physiology. 64(6), 850-860.
Faraji, S., Najafi-Zarrini, H., Hashemi-Petroudi, S.H., Ranjbar, G.A., 2017b. Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis. Iranian Journal of Genetics and Plant Breeding. 6(1), 1-7.
Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., 2015. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research. 44, 279-285.
Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., Wang, Y., Wang, J., 2008. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics and Genomics. 35(2), 105-118.
Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41, 95-98.
Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology. 51(1), 463-499.
Hashemi, S.H., Nematzadeh, G., Ahmadian, G., Yamchi, A., Kuhlmann, M., 2016. Identification and validation of Aeluropus littoralis reference genes for Quantitative Real-Time PCR Normalization. Journal of Biological Research-Thessaloniki. 23, 18.
Huang, Y., Li, M.-Y., Wang, F., Xu, Z.-S., Huang, W., Wang, G.-L., Ma, J., Xiong, A.-S., 2015. Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Molecular Biology Reports. 42(5), 893-905.
Hwang, S.M., Kim, D.W., Woo, M.S., Jeong, H.S., Son, Y.S., Akhter, S., Choi, G.J., Bahk, J.D., 2014. Functional characterization of Arabidopsis HsfA6a as a heat‐shock transcription factor under high salinity and dehydration conditions. Plant, Cell & Environment. 37(5), 1202-1222.
Ikeda, M., Mitsuda, N., Ohme-Takagi, M., 2011. Arabidopsis HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology. 157(3), 1243–1254.
Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., Mcanulla, C., Mcwilliam, H., Maslen, J., Mitchell, A., Nuka, G., 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9), 1236-1240.
Krystkowiak, I., Manguy, J., Davey, N.E., 2018. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants. Nucleic Acids Research. 46, 235-241.
Li, H.-Y., Chang, C.-S., Lu, L.-S., Liu, C.-A., Chan, M.-T., Charng, Y.-Y., 2003. Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Botanical Bulletin of Academia Sinica. 44(2), 129-140.
Li, M., Liu, Y., 1994. Halophytes of yellow river delta in north Shandong province of China. Journal of Qufu Normal University. 125-133.
Liao, Y., Liu, S., Jiang, Y., Hu, C., Zhang, X., Cao, X., Xu, Z., Gao, X., Li, L., Zhu, J., 2017. Genome-wide analysis and environmental response profiling of dirigent family genes in rice (Oryza sativa). Genes & Genomics. 39(1), 47-62.
Liu, Y., Zhang, C., Chen, J., Guo, L., Li, X., Li, W., Yu, Z., Deng, J., Zhang, P., Zhang, K., 2013. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiology and Biochemistry. 64, 92-98.
Mihara, M., Itoh, T., Izawa, T., 2009. SALAD database: a motif-based database of protein annotations for plant comparative genomics. Nucleic Acids Research. 38, 835-842.
Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., Scharf, K.-D., 2002. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes & Development. 16(12), 1555-1567.
Nover, L., Bharti, K., Döring, P., Mishra, S.K., Ganguli, A., Scharf, K.-D., 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones. 6(3), 177.
Scharf, K.-D., Berberich, T., Ebersberger, I., Nover, L., 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 1819(2), 104-119.
Scharf, K.-D., Heider, H., Höhfeld, I., Lyck, R., Schmidt, E., Nover, L., 1998. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology. 18(4), 2240-2251.
Schöffl, F., Prändl, R., Reindl, A., 1998. Regulation of the heat-shock response. Plant Physiology. 117(4), 1135-1141.
Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., Von Koskull‐Döring, P., 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. The Plant Journal. 53(2), 264-274.
Shim, D., Hwang, J.-U., Lee, J., Lee, S., Choi, Y., An, G., Martinoia, E., Lee, Y., 2009. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. The Plant Cell. 21(12), 4031-4043.
Singh, R.K., Jaishankar, J., Muthamilarasan, M., Shweta, S., Dangi, A., Prasad, M., 2016. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Scientific Reports. 6, 32641.
Swindell, W.R., Huebner, M., Weber, A.P., 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics. 8, 125.
Wang, R., 2004. Plant functional types and their ecological responses to salinization in saline grasslands, Northeastern China. Photosynthetica. 42(2), 511-519.
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., Oda, K., 2008. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta. 227(5), 957-967.
Zhang, J., Li, J., Liu, B., Zhang, L., Chen, J., Lu, M., 2013. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses. BMC Genomics. 14(1), 532.