نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه زیست‌شناسی، دانشکده علوم، دانشگاه اصفهان

2 استاد گروه زیست‌شناسی، دانشکده علوم، دانشگاه اصفهان

3 استادیار گروه زیست‌شناسی، دانشکده علوم، دانشگاه پیام نور

چکیده

ژن P5CS (پرولین-5- کربوکسیلات-سنتتاز) کد کننده آنزیم کلیدی در مسیر سنتز پرولین است و به عنوان یک اسمولیت باعث افزایش مقاومت گیاه به شوری می‌شود. ابتدا گیاهان تراریخت حاوی ژن P5CS و غیرتراریخت انتخاب گردیدند. حضور ژن P5CS در گیاهان تراریخت شده از تکنیک PCR با پرایمر اختصاصی ژن NPTII:P5CS استفاده شد. به‌منظور بررسی صفات فیزیولوژیکی گیاهان تراریخت و غیرتراریخت به محیط کشت MS خاوی غلظت های 0، 100، 150 و 200 میلی مولار نمک (NaCl) منتقل گردیدند. پس از چهار هفته نتایج نشان داد که مقادیر وزن‌تر، وزن خشک و کلروفیل در گیاهان تراریخت در مقایسه با گیاهان غیرتراریخت در پاسخ به شوری کمتر کاهش یافت. همچنین گیاهان تراریخت سدیم کمتری را نسبت به گیاهان غیرتراریخت در برگ تجمع دادند. سطح ترکیبات فنلی، آنتوسیانین و فلاونوئید در گیاهان تراریخت کمتر از گیاهان غیرتراریخت مشاهده شد. بعلاوه در گیاهان تراریخت در تمام غلظت‌های نمک نسبت به غیرتراریخت افزایش معنی‌داری در میزان پرولین مشاهده شد. میزان اسکوربات در گیاهان تراریخت و غیر تراریخت تغییر معنی داری نشان ندارد ولی پراکسید هیدروژن در اثر تنش شوری در گیاهان غیر تراریخت نسبت به غیر تراریخت کاهش معنی داری نشان داد. بنابراین به نظر می رسد گیاهان تراریخت با افزایش پرولین و تغییر برخی از انتی اکسیدان های غیر انزیمی در گیاهان تراریخت مقاومت به شوری تنش شوری بیشتری نشان داد.

کلیدواژه‌ها

Abdel-Hameed, E.-S.S., 2009. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chemistry. 114, 1271-1277.
Ahmad, P., Azooz, M., Prasad, M.N.V., 2013. Salt Stress in Plants: Signalling, Omics and Adaptations. Springer Science & Business Media.
Akhavan, Z., 2011, Study of P5CS gene expression and carbohydrate content changes in roots and leaves of transgenic tobacco plants (Nicotiana tabacum L.cv. Wisconsin) under in vitro salt stress condition. MSc dissertation, Faculty of Science Department of Biology, University of Isfahan, Iran.  [In Persian].
Armengaud, P., Thiery, L., Buhot, N., Grenier‐de March, G., Savouré, A., 2004. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiologia Plantarum. 120, 442-450.
Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. 24, 1.
Ashraf, M.A., Ashraf, M., Ali, Q., 2010. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pakistan Journal of Botany. 42, 559-565.
Bates, L., Waldren, R., Teare, I., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205- 207.
Bor, J.-Y., Chen, H.-Y., Yen, G.-C., 2006. Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal Of Agricultural and Food Chemistry. 54, 1680-1686.
Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt tolerance in plants. Crop Science. 45, 437-448.
Chinnusamy, V., Zhu, J., Zhu, J.K., 2006. Salt Stress Signaling and Mechanisms of Plant Salt Tolerance, Genetic Engineering. Springer, pp. 141-177.
Chutipaijit, S., Cha-Um, S., Sompornpailin, K., 2009. Differential accumulations of proline and flavonoids in indica rice varieties against salinity. Pakistan Journal of Botany. 41, 2497-2506.
Delauney, A.J., Verma, D.P.S., 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal. 4, 215-223.
Dar, M.I., Naikoo, M.I., Rehman, F., Naushin, F., Khan, F.A., 2016. Proline accumulation in plants: roles in stress tolerance and plant development, in: Iqbal, N., Nazar, R.A., Khan, N. (eds.), Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer India, New Delhi, pp. 155-166.
Ehsanpour, A., Fatahian, N., 2003. Effects of salt and proline on Medicago sativa callus. Plant Cell, Tissue and Organ Culture. 73, 53-56.
Ehsanpour, A., Twell, D., 2005. Analysis of SFL1 and SFL2 Promoter Regionin Arabidopsis thaliana using gateway cloning system. Journal of Science. 16, 303-309.
Ehsanpour, A.A., Zarei, S., Abbaspour, J., 2012. The role of over expression of P5CS gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. Journal of Cell and Molecular Research. 4, 43-49.
Eryılmaz, F., 2006. The relationships between salt stress and anthocyanin content in higher plants. Biotechnology and Biotechnological Equipment. 20, 47-52.
Forghani, A.H., Almodares, A., Ehsanpour, A.A., 2018. Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Applied Biological Chemistry. 61, 113-124.
Forghani, A.H., Almodaress, A., Ehsanpour, A.A., 2017. Comparative effects of gibberellin and paclobutrazol on Na and k content, phenolic compounds and the activity of some enzymesin its biosynthesis pathway in sweet sorghum (sorghum bicolor) under salt stress. Journal of Crop Production and Processing. 7, 133-149. [In Persian with English summary].
Garratt, L.C., Janagoudar, B.S., Lowe, K.C., Anthony, P., Power, J.B., Davey, M.R., 2002. Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine. 33, 502-511.
Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48, 909-930.
Hare, P., Cress, W., Van Staden, J., 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. Journal of Experimental Botany. 50, 413-434.
Hasanuzzaman, M., Hossain, M.A., da Silva, J.A.T., Fujita, M., 2012. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor.In: Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M. (eds.),Crop Stress and its Management: Perspectives and Strategies. Springer, pp. 261-315.
Hasanuzzaman M., Nahar K., Fujita M., 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad, P., Azooz, M., Prasad, M. (eds.), Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. pp. 25-87.
Hernández, J.A., Ferrer, M.A., Jiménez, A., Barceló, A.R., Sevilla, F., 2001. Antioxidant systems and O2./H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiology. 127, 817-831.
Hichem, H., Mounir, D., 2009. Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Industrial Crops and Products. 30, 144-151.
Hu, C., Delauney, A.J., Verma, D., 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences. 89, 9354-9358.
Iqbal, N., Umar, S., Khan, N.A., Khan, M.I.R., 2014. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany. 100, 34-42.
Iyer, S., Caplan, A., 1998. Products of proline catabolism can induce osmotically regulated genes in rice. Plant Physiology. 116, 203-211.
Khalid, K.A., da Silva, J.A.T., 2010. Yield, essential oil and pigment content of Calendula officinalis L. flower heads cultivated under salt stress conditions. Scientia Horticulturae. 126, 297-305.
Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A., 2012. Phytohormones and Abiotic Stress Tolerance in Plants. Springer-Verlag Berlin Heidelberg, Germany.
Kishor, P.K., Sangam, S., Amrutha, R., Laxmi, P.S., Naidu, K., Rao, K., Rao, S., Reddy, K., Theriappan, P., Sreenivasulu, N., 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science. 424-438.
Lutts, S., Kinet, J., Bouharmont, J., 1996. Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. Journal of Plant Physiology. 149, 186-195.
Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J.I., Damsz, B., Narasimhan, M.L., Hasegawa, P.M., Joly, R.J., Bressan, R.A., 2002. Does proline accumulation play an active role in stress‐induced growth reduction? The Plant Journal. 31, 699-712.
Makkar, H.P., Siddhuraju, P., Becker, K., 2007. Plant Secondary Metabolites. Humana Press.
Mani, S., Van de Cotte, B., Van Montagu, M., Verbruggen, N., 2002. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiology. 128, 73-83.
Mittova, V., Tal, M., Volokita, M., Guy, M., 2002. Salt stress induces up‐regulation of an efficient chloroplast antioxidant system in the salt‐tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum. 115, 393-400.
Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 15, 473-497.
Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. Febs Letters. 461, 205-210.
Nap, J.-P., Bijvoet, J., Stiekema, W.J., 1992. Biosafety of kanamycin-resistant transgenic plants. Transgenic Research. 1, 239-249.
Peng, Z., Lu, Q., Verma, D., 1996. Reciprocal regulation of Δ 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Molecular and General Genetics, MGG. 253, 334-341.
Per, T.S., Khan, N.A., Reddy, P.S., Masood, A., Hasanuzzaman, M., Khan, M.I.R., Anjum, N.A., 2017. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry. 115,126-140.
Poljakoff‐Mayber, A., Somers, G., Werker, E., Gallagher, J., 1994. Seeds of Kosteletzkya virginica (Malvaceae): their structure, germination, and salt tolerance. II. Germination and salt tolerance. American Journal of Botany. 81, 54-59.
Razavizadeh, R., Ehsanpour, A., 2009. Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants. Biological Letters. 46, 63-75.
Razavizadeh, R., 2010, Evaluation of P5CS gene over expression on some physiological parameters and proteomics of transgenic tobacco plants under in vitro salt stress. PhD dissertation, Faculty of Science Department of Biology, University of Isfahan, Iran.  [In Persian].
Riahi, M., Ehsanpour, A.A., 2013. Responses of transgenic tobacco (Nicotiana plambaginifolia) over-expressing P5CS gene underin vitrosalt stress. Progress in Biological Sciences. 2, 76-84.
Sairam, R., Tyagi, A., 2004. Physiological and molecular biology of salinity stress tolerance in deficient and cultivated genotypes of chickpea. Plant Growth Regulation. 57, 109-114.
Santos, C.V., 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae. 103, 93-99.
Santos, M., Camara, T., Rodriguez, P., Claparols, I., Torne, J., 1996. Influence of exogenous proline on embryogenic and organogenic maize callus subjected to salt stress. Plant Cell, Tissue and Organ Culture.59-65,47.
Shi, G., Liu, C., Cui, M., Ma, Y., Cai, Q., 2012. Cadmium tolerance and bioaccumulation of 18 hemp accessions. Applied Biochemistry and Biotechnology. 168, 163-173.
Soussi, M., Ocana, A., Lluch, C., 1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany. 49, 1329-1337.
Steward, G.R., Larher F.,1980. Accumulation of amino acids and related compounds in relation to environmental stress. Amino acids and derivatives. In: Paul, K.S., Eric, E.C. (eds.), Biochemistry of Plants. 1sted. Volume 5. Academic Press; New York, NY, USA. pp. 609–635
Stewart, G., Lee, J., 1974. The role of proline accumulation in halophytes. Planta. 120, 279-289.
Thompson, J.F., 1980. Arginine synthesis, proline synthesis, and related processes, Amino acids and derivatives. Elsevier, pp. 375-402.
Thompson, M.R., Douglas, T.J., Obata‐Sasamoto, H., Thorpe, T.A., 1986. Mannitol metabolism in cultured plant cells. Physiologia Plantarum. 67, 365-369.
Tiwari, J.K., Munshi, A.D., Kumar, R., Pandey, R.N., Arora, A., Bhat, J.S., Sureja, A.K., 2010. Effect of salt stress on cucumber: Na+/K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiologiae Plantarum. 32, 103-114.
Trotel‐Aziz, P., Niogret, M.F., Larher, F., 2000. Proline level is partly under the control of abscisic acid incanola leaf discs during recovery from hyper‐osmotic stress. Physiologia Plantarum. 110, 376-383.
Van Rensburg, L., Krüger, G., Krüger, H., 1993. Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. Journal of Plant Physiology. 141, 188-194.
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science. 151, 59-66.
Venekamp, J., 1989. Regulation of cytosol acidity in plants under conditions of drought. Physiologia Plantarum. 76, 112-117.
Verma, S., Mishra, S.N., 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology. 162, 669-677.
Wagner, G.J., 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology. 64, 88-93.
Wahid, A., Ghazanfar, A., 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology.163, 723-730.
Yancey, P.H., 2001. Water stress, osmolytes and proteins. American Zoologist 41, 699-709.
Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K., 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant and Cell Physiology. 38, 1095-1102.
Zhu, J.-K., 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology. 124, 941-948.