Abdolahpour, H., Tohidi Nejad, E., Pasandi Pour, A., 2021. Effect of nitrogen, phosphorus and potassium fertilizers on morpho-physiological characteristics and seed yield of quinoa (
Chenopodium quinoa Willd.). Journal of Crop Ecophysiology. 15, 57-72. [In Persian with English Summary].
https://doi.org/10.30495/jcep.2021.681006
Adhikari, A., Khan, M.A., Lee, K.E., Kang, S. M., Dhungana, S.K., Bhusal, N., Lee, I.J., 2020. The halotolerant rhizobacterium-Pseudomonas koreensis MU2 enhances inorganic silicon and phosphorus use efficiency and augments salt stress tolerance in soybean (
Glycine max L.). Microorganisms. 8, 1256.
https://doi.org/10.3390/microorganisms8091256
Alandia, G., Odone, A., Rodriguez, J.P., Bazile, D., Condori, B., 2021. Quinoa—Evolution and future perspectives. The Quinoa genome, 179-195.
https://doi.org/10.1007/978-3-030-65237-1_11
Belouchrani, A.S., Latati, M., Ounane, S.M., Drouiche, N., Lounici, H., 2019. Study of the interaction salinity: phosphorus fertilization on sorghum. Plant Growth Regulation. 1-6.
https://doi.org/10.1007/s00344-019-10057-4
Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., Gurmani, A. R., 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36, 904-916.
https://doi.org/10.1080/ 01490451.2019.1654043
Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., Melo, I. S., 2020. Phosphorus-solubilizing
Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10, 1-13.
https://doi.org/10.1038/s41598-020-59793-8
Bouras, H., Choukr-Allah, R., Amouaouch, Y., Bouaziz, A., Devkota, K.P., El Mouttaqi, A., Bouazzama, B., Hirich, A., 2022 How does quinoa (
Chenopodium quinoa Willd.) rspond to phosphorus fertilization and irrigation water salinity? Plants. 11, 216.
https://doi.org/10.3390/plants11020216
Cai, D., Xu, Y., Zhao, F., Zhang, Y., Duan, H., Guo, X., 2021. Improved salt tolerance of Chenopodium quinoa Willd. contributed by
Pseudomonas sp. strain M30-35. PeerJ. 9, e10702.
https://doi.org/10.7717/peerj.10702
Deng, Y., Zhao, L., Anwar, S. et al., 2002. Phosphorus fertigation conferred lodging tolerance and improved grain quality in Chenopodium quinoa via enhanced root proliferation and stalk strength. Soil Science and Plant Nutrition. 22, 5099–5110.
https://doi.org/10.1007/ s42729-022-00986-7
Frew, A., 2019. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C3 and C4 crop plants. Soil Biology and Biochemistry, 135, 248-250. https://doi.org/10.1016/j.soilbio.2019.05.015
Jorfi, A., Alavifazel, M., Gilani, A., Ardakani, M. R., Lak, S., 2023. Quinoa (
Chenopodium quinoa) root system development as affected by phosphorus and zinc sulfate application in an alkaline soil. Gesunde Pflanzen, 75, 885-897.
https://doi.org/10.1007/s10343-022-00740-0
Khan, A., Lu, G., Ayaz, M., Zhang, H., Wang, R., Lv, F., Yang, X., Sun, B. Zhang, S., 2018. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture, Ecosystems & Environment. 256, 1-11.
https://doi.org/10.1016/j.agee.2018.01.006
Khoshgoftarmanesh, A. H., 2007. Evaluation of Plant Nutrition Status and Optimum Fertilizer Management, First ed. Isfahan University of Technology. Isfahan, Iran. [In Persian]
Kumawat, K. C., Sharma, P., Sirari, A., Sharma, B., Kumawat, G., Nair, R. M., Bindumadhava, H., 2024. Co-existence of halo-tolerant
Pseudomonas fluorescens and
Enterococcus hirae with multifunctional growth promoting traits to ameliorate salinity stress in
Vigna radiata. Chemosphere, 349, 140953.
https://doi.org/10.1016/j.chemosphere.2023.140953
Ning, Y., Xiao, Z., Weinmann, M., Li, Z., 2019. Phosphate uptake is correlated with the root length of celery plants following the association between arbuscular mycorrhizal fungi, Pseudomonas sp. and biochar with different phosphate fertilization levels. Agronomy, 9, 824.
https://doi.org/10.3390/agronomy9120824
Olsen, S.R., Cole, C.V., Watanabe, F.S. Dean, L.A., 1954. In: Klute, A. (Ed), Methods of Soil Analysis: Physical Properties, Part 1, second ed. Agron Monogr, No 9. Madison WI: ASA and SSSA. pp. 403–430.
Papan, P., Moezzi, A., Chorom, M., Rahnama, A., 2021. The effect of urea fertilizer application and sugarcane field drainage on some soil properties, grain yield and nutrient concentrations in quinoa seeds. Journal of Soil Management and Sustainable Production. 11, 71-90. [In Persian with English abstract].
https://doi.org/10.22069/ejsms.2021.18528.1988
Papan, P., Moezzi, A., Chorom, M., Rahnama, A., 2022. Biochemical and physiological response of quinoa to application of different levels of nitrogen and salinity irrigation water. Environmental Stresses in Crop Sciences, 15, 501-515. [In Persian with English Summary].
https://doi.org/10.22077/escs.2021.3846.1923
Poulton, P. R., Johnston, A. E., White, R. P., 2013. Plant‐available soil phosphorus. Part I: the response of winter wheat and spring barley to Olsen P on a silty clay loam. Soil Use and Management, 29, 4-11.
https://doi.org/10.1111/j.1475-2743.2012.00450.x
Rathore, S., Kumar, R., 2021. Vermicompost fertilization and pinching improves the growth, yield, and quality of super food (
Chenopodium quinoa Willd.) in the western Himalaya. Acta Physiologiae Plantarum. 43, 23.
https://doi.org/10.1007/s11738-020-03184-z
Rollano-Peñaloza, O. M., Widell, S., Mollinedo, P., Rasmusson, A. G., 2018. Trichoderma harzianum T-22 and BOL-12QD inhibit lateral root development of
Chenopodium quinoa in axenic co-culture. Cogent Biology. 4, 1530493.
https://doi.org/10.1080/23312025.2018.1530493
Sahrawat, K. L., 2008. Direct and residual phosphorus effects on grain yield-phosphorus uptake relationships in upland rice on an ultisol in West Africa. International Journal of Plant Production. 2, 281-287.
https://oar.icrisat.org/id/eprint/737
Sahrawat, K.L., Jones, M.P., Diatta, S., 1995. Response of upland rice to phosphorus in an Ultisol in the humid forest zone of West Africa. Fertilizer Research. 41, 11-17.
https://doi.org/10.1007/BF00749515
Sahrawat, K. L., Wani, S. P., Girish Chander, G. C., Pardhasaradhi, G., Krishnappa, K., 2016. Soil nutrient mapping for on-farm fertility management. In Harnessing dividends from drylands: innovative scaling up with soil nutrients (pp. 59-77). Wallingford UK: CABI.
https://doi.org/10.1079/9781780648156.0059
Smith, S. E., Jakobsen, I., Grønlund, M., Smith, F. A., 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology. 156, 1050-1057.
https://doi.org/10.1104/pp.111.174581
Yadav, K. K., Sarkar, S., 2019. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environment and Ecology. 37, 89-93.
Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.E., Schwember, A.R., 2014. Breeding quinoa (
Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding, 34, 13-30.
https://doi.org/10.1007/s11032-014-0023-5