اثر مقادیر نور در مراحل مختلف رشد بر خصوصیات زراعی نخود (.Cicer arietinum L)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد زراعت، گروه تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه

2 دانشیار، گروه تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه

چکیده

رشد نخود (.Cicer arietinum L)، مثل سایر محصولات تحت تأثیر شرایط محیطی زیادی از جمله شدت نور می‌باشد. براین اساس، آزمایشی به منظور بررسی مقادیر نور بر خصوصیات رشد و عملکرد نخود در مزرعه تحقیقاتی پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، اجرا شد. فاکتورها شامل شدت نور (100، 75، 50، 25 درصد و بدون نور مستقیم) در مراحل رشد (رویشی، زایشی و کل دوره رشد) بر نخود رقم ILC482 بودند. نتایج نشان داد که با کاهش شدت نور مقادیر عملکرد و اجزای عملکرد دانه، وزن خشک برگ، کلروفیل و کربوهیدرات‌های محلول در برگ و ساقه (بجز ارتفاع بوته) کاهش داشت. میزان کاهش در مرحله زایشی بیشتر از مرحله رویشی بود. میزان کاهش عملکرد بیولوژیک، عملکرد دانه، تعداد غلاف در بوته، تعداد دانه در بوته و وزن هزار‌‌دانه در مرحله رویشی و در 75 درصد نور بترتیب 24، 30، 28، 27 و 3.5 درصد نسبت به تیمار 100 درصد نور کاهش داشتند. این در حالیست که، برای مرحله زایشی این کاهش بترتیب 30، 35، 40، 40 و 4.5 درصد بودند. با کاهش شدت نور، تعداد دانه در بوته و وزن هزاردانه بترتیب بیشترین و کمترین نوسان داشتند. در کل، با توجه به نتایج این آزمایش، اینگونه استنباط می‌شود که نخود در شرایط کشت مخلوط و موقعیت‌های که کاهش نور و سایه در طول دوره رشد وجود دارد، دچار کاهش معنی‌دار رشد و عملکرد دانه می‌شود.

کلیدواژه‌ها

موضوعات


Bai, Z., Mao, S., Han, Y., Feng, L., Wang, G., Yang, B., Zhi, X., Fan, Z., Lei, Y., Du, W., Li, Y., 2016. Study on light interception and biomass production of different cotton cultivars. PloS One. 11, 1-17. https://doi.org/10.1371/journal.pone.0156335
Balfagón, D., Zandalinas, S. I., GómezffCadenas A., 2019. High temperatures change the perspective: Integrating hormonal responses in citrus plants under coffoccurring abiotic stress conditions. Physiologia Plantarum. 165, 183-197. https://doi.org/10.1111/ppl.12815
Chen, Y., Ghanem, M.E., Siddique, K.H., 2017. Characterizing root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany. 68, 1987-1999. https://doi.org/10.1093/jxb/erw368
Chen, Z., Shah Jahan, M., Mao, P., Wang, M., Liu, X., Guo, S., 2021. Functional growth, photosynthesis and nutritional property analyses of lettuce grown under different temperature and light intensity. The Journal of Horticultural Science and Biotechnology. 96, 53-61. https://doi.org/10.1080/14620316.2020.1807416
Dutta, S.S., Tyagi, W., Pale, G., Pohlong, J., Aochen, C., Pandey, A., Pattanayak, A., Rai, M., 2018. Marker–trait association for low-light intensity tolerance in rice genotypes from Eastern India. Molecular Genetics and Genomics. 293, 1-14. https://doi.org/10.1007/s00438-018-1478-6
Fan, Y., Chen, J., Cheng, Y., Raza, M.A., Wu, X., Wang, Z., Liu, Q., Wang, R., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., Yang, W., Yang, F., 2018. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PloS One. 13, 1-15. https://doi.org/10.1371/journal.pone.0198159
FAOSTAT, 2022. The food and agriculture organization of the United Nations (UNFAO, Rome, Italy). Chickpea production in 2022.
Gao, J., Shi, J., Dong, S., Liu, P., Zhao, B., Zhang, J., 2017. Grain yield and root characteristics of summer maize (Zea mays L.) under shade stress conditions. Journal of Agronomy and Crop Science. 203, 562–573. https://doi.org/10.1111/jac.12210
Gao, Y.B., Zheng, W.W., Zhang, C., Zhang, L.L., Xu, K., 2019. High temperature and high light intensity induced photo inhibition of bayberry (Myrica rubra Sieb. et Zucc.) by disruption of D1 turnover in photosystem II. Scientia Horticulturae. 248, 132-137. https://doi.org/10.1016/j.scienta.2019.01.007
Gaur, P.M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S.B., Jayalakshmi, V., Mannur, D.M., Vijayakumar, A.G., Ganga Rao, N.V., Ojiewo, C., Fikre, A., Kimurto, P., Kileo, R.O., Girma, N., Chaturvedi, S.K., Varshney, R.K., Dixit, G.P., 2019. Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breeding. 138, 389-400. https://doi.org/10.1111/pbr.12641
Gong, W., Jiang, C., Wu, Y., Chen, H., Liu, W., Yang, W., 2015. Tolerance vs. avoidance: Two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica. 53, 259–268. https://doi.org/10.1007/s11099-015-0103-8
Hussain, S., Iqbal, N., Rahman, T., Liu, T., Brestic, M., Safdar, M. E., Asghar, M.A., Farooq, M.U., Shafiq, I., Ali, A., Shoaib, M., Chen, G., Qin, S., Liu, W., Yang, W., 2019. Shade effect on carbohydrates dynamics and stem strength of soybean genotypes. Environmental and Experimental Botany. 162, 374–382. https://doi.org/10.1016/j.envexpbot.2019.03.011
Khalid, M., Raza, M., Yu, H., Sun, F., Zhang, Y., Lu, F., Si, L., Iqbal, N., Khan, I., Fu, F.L., Li, W.C., 2019. Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Applied Ecology Environmental Research. 17, 2551–2569. https://doi.org/10.15666/aeer/1702_25512569
Lake, L., Sadras, V.O., 2014. The critical period for yield determination in chickpea (Cicer arietinum L.). Field Crops Research. 168, 1–7. https://doi.org/10.1016/j.fcr.2014.08.003
Lorenzo, C.D., Alonso Iserte, J., Sanchez Lamas, M., Antonietti, M.S., Garcia Gagliardi, P., Hernando, C.E., Dezar, C.A.A., Vazquez, M., Casal, J.J., Yanovsky, M.J., Cerdán, P.D., 2019. Shade delays flowering in Medicago sativa. The Plant Journal. 99, 7–22. https://doi.org/10.1111/tpj.14333
Mitache, M., Baidani, A., Bencharki, B., Idrissi, O., 2024. Exploring the impact of light intensity under speed breeding conditions on the development and growth of lentil and chickpea. Plant Methods. 20, 30. https://doi.org/10.1186/s13007-024-01156-9
Mobini, S.H., Lulsdorf, M., Warkentin, T.D., Vandenberg, A., 2016. Low red: Far-red light ratio causes faster in vitro flowering in lentil. Canadian Journal of Plant Science. 96, 908–918. https://doi.org/10.1139/cjps-2015-0282
Naveed, M., Shafiq, M., Nadeem, M., Haq, A.U., Zahid, M.A., 2020. " Noor-2013" a bold seeded and high yielding chickpea kabuli variety developed indigenously. Journal of Animal and Plant Sciences. 30, 885–894. https://doi.org/10.36899/JAPS.2020.4.0104
Park, Y., Runkle, E.S. 2017. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany. 136, 41–49. https://doi.org/10.1016/j.envexpbot.2016.12.013
Pierik, R., Testerink, C., 2014. The art of being flexible: How to escape from shade, salt, and drought. Plant Physiology. 166, 5–22. https://doi.org/10.1104/pp.114.239160
Ramegowda, V., Senthil, A., Senthil-Kumar, M., 2024. Stress combinations and their interactions in crop plants. Plant Physiology Reports. 29, 1-5. https://doi.org/10.1007/s40502-024-00785-5
Shafiq, I., Hussain, S., Raza, M.A., Iqbal, N., Asghar, M.A., Reza, A., Fan, Y., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W., Yang, F., 2021. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture. 20, 4–23. https://doi.org/10.1016/S2095-3119(20)63227-0
Sulistyowati, D., Chozin, M., Syukur, M., Melati, M., Guntoro, D., 2016. Selection of shade-tolerant tomato genotypes. Journal of Applied Horticulture. 18, 154–159. https://doi.org/10.37855/jah.2016.v18i02.27
Szymanska, R., Ślesak, I., Orzechowska, A., Kruk, J., 2017. Physiological and biochemical responses to high light and temperature stress in plants. Environmental and Experimental Botany. 139, 165-177. https://doi.org/10.1016/j.envexpbot.2017.05.002
Toyama, T., Hanaoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M., Mori, K., 2019. Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnology for Biofuels. 12 (205), 1-12. https://doi.org/10.1186/s13068-019-1544-2
Wang, X., Gao, X., Liu, Y., Fan, S., Ma, Q., 2020. Progress of research on the regulatory pathway of the plant shade-avoidance syndrome. Frontiers in Plant Science. 11, 1-12. https://doi.org/10.3389/fpls.2020.00439
Wimalasekera, R., 2019. Effect of light intensity on photosynthesis. Photosynthesis, Productivity and Environmental Stress. 4, 65-73. https://doi.org/10.1002/9781119501800.ch4
Yang, C., Li, L., 2017. Hormonal regulation in shade avoidance. Frontiers in Plant Science. 8, 1527. https://doi.org/10.3389/fpls.2017.01527
Yang, F., Fan, Y., Wu, X., Cheng, Y., Liu, Q., Feng, L., Chen, J., Wang, Z., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., Yang, W., 2018. Auxin to gibberellin ratio as a signal for light intensity and quality in regulating soybean growth and matter partitioning. Frontiers in Plant Science. 9, 1-13. https://doi.org/10.3389/fpls.2018.00056
Yang, F., Feng, L., Liu, Q., Wu, X., Fan, Y., Raza, M.A., Cheng, Y., Chen, J., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., Yang, W., 2018. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany. 150, 79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008
Yeasmen, N., Orsat, V. 2024. Industrial processing of chickpeas (Cicer arietinum) for protein production. Crop Science. 1-24. https://doi.org/10.1002/csc2.21361
Yu, W., Liu, Y., Song, L., Jacobs, D.F., Du, X., Ying, Y., Shao, Q., Wu, J., 2017. Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. Journal of Plant Growth Regulation. 36, 148–160. https://doi.org/10.1007/s00344-016-9625-y
Zhang, J., Chen, W., Dell, B., Vergauwen, R., Zhang, X., Mayer, J., Ende, W., 2015. Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling. Frontiers in Plant Science. 6, 1-11. https://doi.org/10.3389/fpls.2015.00624
Zheng, D.M., Wang, X., Liu, Q., Sun, Y.R., Ma, W.T., Li, L., Yang, Z., Tcherkez, G., Adams., M.A., Yang, Y., Gong, X.Y., 2024. Temperature responses of leaf respiration in light and darkness are similar and modulated by leaf development. New Phytologist. 241, 1435-1446. https://doi.org/10.1111/nph.19428
Zhou, R., Yu, X., Huang, S., Song, X., Rosenqvist, E., Ottosen, C.O., 2020. Genotype dependent responses of chickpea to high temperature and moderately increased light. Plant Physiology and Biochemistry. 154, 353-359. https://doi.org/10.1016/j.plaphy.2020.06.030