ارزیابی ژنوتیپ های تریتیکاله بر اساس شاخص های مقاومت به تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم کشاورزی، دانشگاه آزاد اسلامی واحد فیروزآباد، فارس

2 دانشیار گروه علوم کشاورزی، دانشگاه آزاد اسلامی واحد شیراز، فارس

3 استادیار گروه علوم کشاورزی، دانشگاه آزاد اسلامی واحد فیروزآباد، فارس

4 دانشیار گروه علوم کشاورزی،دانشگاه آزاد اسلامی واحد فیروزآباد، فارس

چکیده

به منظور بررسی تأثیر تیمارهای مختلف آبیاری و تعیین مناسب ترین شاخص مقاومت به خشکی در ژنوتیپ های تریتیکاله، مطالعه ای با چهار سطح آبیاری و نه (9) ژنوتیپ جدید تریتیکاله طی سال های زراعی 1398-1396 انجام شد. سطوح آبیاری شامل شاهد و قطع آبیاری در سه مرحله گلدهی، شیری و خمیری دانه بود. نتایج تحلیل واریانس مذکب نشان دهنده اثر معنیدار رقم، آبیاری به همراه اثرمتقابل دوگانه آنها بود، در حالی که اثر سال و اثرات متقابل سال در تیمارهای آزمایشی اکثرا معنی‌دار نگردیدند. علاوه بر استفاده از نتایج تحلیل واریانس و مقایسه میانگین، در این تحقیق از روش‌های چند متغیره شامل بای‌پلات بر اساس تجزیه به مؤلفه‌های اصلی و نقشه حرارتی است. بر اساس این روش‌ها، ژنوتیپ‌های شماره 4 ( ET-85-04)، 1 (سناباد) و 2 (پاژ) مناسب‌ترین ژنوتیپ‌ها برای تحمل شرایط تنش خشکی در مقایسه با سایر ژنوتیپ‌ها بودند. علاوه بر آن، نتایج تجزیه شاخص‌ها نشان داد که ژنوتیپ‌های 8 (ET-85-04) و 9 (ET-83-20) درارای کمترین همبستگی با شاخص‌های تنش و در نتیجه تنوع کم در پاسخ به تنش خشکی بودند. در نهایت، نتایج نشان داد که ژنوتیپET-85-04 می‌تواند جزء ژنوتیپ‌های متحمل به خشکی و همزمان پایدار باشد و جهت معرفی به عنوان یک رقم جدید مورد استفاده قرار گیرد. بر اساس نتایج همچنین مشخص گردید که برای انتخاب ژنوتیپ‌های متحمل در برنامه‌های اصلاحی، استفاده از شاخص‌های تحمل تنش با هم به صورت هم‌زمان بهترین راه برای استخراج اطلاعات از تمامی شاخص های تحمل است. بنابراین طبق نتایج این تحقیق پیشنهاد می‌شود که به جای استفاده از یک مدل و شاخص خاص به تنهایی، بهتر است از روش‌های تحمل تنش به صورت ترکیبی استفاده شود تا ژنوتیپ‌های پایدار و متحمل به درستی تشخیص داده شوند.

کلیدواژه‌ها

موضوعات


Aliakbari, M., Saed-Moucheshi, A., Hashemi Nasab, H., Pirasteh-Anosheh, H., Asad, M.T., Emam, Y., 2013. Suitable stress indices for screening resistant wheat genotypes under water deficit conditions. International Journal of Agronomy Plant Production 4, 2665-2672. https://doi.org2665-2672, 2013
Bano, H., Athar, H.u.R., Zafar, Z.U., Kalaji, H.M., Ashraf, M., 2021. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean (Vigna radiata L. Wilczek). Physiologia Plantarum 172, 1244-1254. https://doi.org/10.1111/ppl.13327
Blum, A., 2006. Drought adaptation in cereal crops: a prologue. Drought Adaptation in Cereals, 4, 3-15. https://doi.org/10.1201/9781003578338
Fernandez, G.C., 1992. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, pp. 257-270. https://doi.org/10.1023/A:1018353200015
Flowers, T., Yeo, A., 1995. Breeding for salinity resistance in crop plants: where next? Functional Plant Biology 22, 875-884. https://doi.org/10.22126/cbb.2023.8680.1033
Garbrecht, J.D., Zhang, X.C., Steiner, J.L., 2014. Climate change and observed climate trends in the fort cobb experimental watershed. Journal of Environmental Quality 43, 1319-27. https://doi.org/10.2134/jeq2013.07.0286
Ghasemi Soloklui, A.A., Gharaghani, A., Oraguzie, N., Saed-Moucheshi, A., Vazifeshenas, M., 2019. Genetic diversity, heritability and inter-relationships of fruit quality and taste attributes among Iranian pomegranate (Punica granatum L.) cultivars using multivariate statistical analysis. The International Journal of Tropical and Subtropical Horticulture 74, 303-318. https://doi.org/10.17660/th2019/74.6.5
Naghavi, M.R., Aboughadareh, A.P., Khalili, M., 2013. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Scientia Biologicae 5, 388-393. https://doi.org/10.15835/nsb539049
Nargeseh, H.E., Aghaalikhani, M., Rad, A.H.S., Mokhtassi-Bidgoli, A., Sanavy, S.A.M.M., 2020. Comparison of 17 rapeseed cultivars under terminal water deficit conditions using drought tolerance indices. Journal of Agricultural Science and Technology 22, 489-503. http://dorl.net/dor/20.1001.1.16807073.2020.22.2.10.8
O’mara, J.G., 1953. The cytogenetics of Triticale. The Botanical Review 19, 587-605.
Patel, A.R., Patel, M.L., Patel, R.K., Mote, B.M., 2019. Effect of different sowing date on phenology, growth and yield of rice–a review. Plant Archives 19, 12-16. https://doi.org/10.1023/A:123455623
Ramirez-Vallejo, P., Kelly, J.D., 1998. Traits related to drought resistance in common bean. Euphytica 99, 127-136. https://doi.org/10.1023/A:1018353200015
Riasat, M., Kiani, S., Saed-Mouchehsi, A., Pessarakli, M., 2019. Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. Journal of Plant Nutrition 42, 111-126. https://doi.org/10.1080/01904167.2018.1549675
Riasat, M., Pessarakli, M., Ahmadi Niaz, A., Saed-Moucheshi, A., 2018. Assessment of different wheat genotypes with altered genetic background in response to different salinity levels. Journal of Plant Nutrition 41, 1821-1833.https://doi.org/10.1080/01904167.2018.1462383
Riasat, M., Saed-Mouchehsi, A., Jafari, A.A., 2020. Effect of drought stress levels on seedling morpho-physiological traits of alfalfa (Medicago sativa) populations grown in glasshouse. Journal of Rangeland Science 10, 86-97. https://doi.org/10.22126/cbb.2023.8680.1033
Rosielle, A., Hamblin, J., 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science 21, 943-946. https://doi.org/10.22126/cbb.2023.8680.1033
Saed-Moocheshi, A., Shekoofa, A., Sadeghi, H., Pessarakli, M., 2014. Drought and salt stress mitigation by seed priming with KNO3 and urea in various maize hybrids: An experimental approach based on enhancing antioxidant responses. Journal of Plant Nutrition 37, 674-689. https://doi.org/10.1080/01904167.2013.868477
Saed-Moucheshi, A. 2018. Evaluation of morphological, physiological, and moleculare characteristics of triticale genotypes under drought stress condition, Shiraz Univarsity, Shiraz 17, 240-256. [In Persian]. https://doi.org/10.1080/01904167.2013.868477
Saed-Moucheshi, A., Heidari, B., Zarei, M., Emam, Y., Pessarakli, M., 2013. Changes in antioxidant enzymes activity and physiological traits of wheat cultivars in response to arbuscular mycorrhizal symbiosis in different water regimes. Iran Agricultural Research 31, 35-50. [In Persian]. https://doi.org/10.1094/CCHEM.2004.81.2.220
Saed-Moucheshi, A., Mozafari, A.A., Pessarakli, M., Rezaei Mirghaed, E., Sohrabi, F., Zaheri, S., Barzegar Marvasti, F., Baniasadi, F., 2022. Improved strategy of screening tolerant genotypes in drought stress based on a new program in R-language: a practical triticale breeding program. Journal of Plant Nutrition 2023, 1-18. https://doi.org/10.1080/01904167.2022.2096467
Saed-Moucheshi, A., Pessarakli, M., Mozafari, A.A., Sohrabi, F., Moradi, M., Barzegar Marvasti, F., 2021a. Screening barley varieties tolerant to drought stress based on tolerant indices. Journal of Plant Nutrition, 42, 1-12. https://doi.org/10.1080/01904167.2021.1963773
Saed-Moucheshi, A., Razi, H., Dadkhodaie, A., Ghodsi, M., Dastfal, M., 2019. Association of biochemical traits with grain yield in triticale genotypes under normal irrigation and drought stress conditions. Australian Journal of Crop Science 13, 272. https://doi.org/10.22126/cbb.2023.8680.1033
Saed-Moucheshi, A., Safari, H., 2023a. Investigation of regulatory elements related to superoxide dismutase enzyme genes in wheat. Cereal Biotechnology and Biochemistry 2, 64-73. [In Persian]. https://doi.org/10.22126/cbb.2023.8692.1034
Saed-Moucheshi, A., Safari, H., 2023b. Superoxide dismutase enzyme expression in root and shoot of triticale seedlings under drought stress conditions. Cereal Biochemistry and Biotechnology 2, 581-595. [In Persian]. https://doi.org/10.22126/cbb.2023.8680.1033
Saed-Moucheshi, A., Sohrabi, F., Fasihfar, E., Baniasadi, F., Riasat, M., Mozafari, A.A., 2021b. Superoxide dismutase (SOD) as a selection criterion for triticale grain yield under drought stress: a comprehensive study on genomics and expression profiling, bioinformatics, heritability, and phenotypic variability. BMC Plant Biology 21, 1-19. https://doi.org/10.1186/s12870-021-02919-5
Sánchez-Reinoso, A.D., Ligarreto-Moreno, G.A., Restrepo-Díaz, H., 2020. Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture 19, 99-107. https://doi.org/10.1016/S2095/3119(19)62620-1
Serna-Saldivar, S.O., Guajardo-Flores, S., Viesca-Rios, R., 2004. Potential of triticale as a substitute for wheat in flour tortilla production. Cereal Chemistry. 81, 220-225. https://doi.org/10.1094/CCHEM.2004.81.2.220
Zareei, E., Karami, F., Aryal, R., Saed-Moucheshi, A., 2022. Genotypic by phenotypic interaction affects the heritability and relationship among quantity and quality traits of strawberry (Fragaria×Ananassa). New Zealand Journal of Crop and Horticultural Science 23, 1-20.  https://doi.org/10.1080/01140671.2022.2039725

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 31 شهریور 1404
  • تاریخ دریافت: 19 خرداد 1403
  • تاریخ بازنگری: 10 مهر 1403
  • تاریخ پذیرش: 14 مهر 1403