نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، سیستان و بلوچستان، ایران

2 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، سیستان و بلوچستان، ایران

3 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، آذربایجان غربی، ایران

4 استاد، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، سیستان و بلوچستان، ایران

5 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه سراوان، سیستان و بلوچستان، ایران

6 دانشجوی سابق دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، آذربایجان غربی، ایران

چکیده

این مطالعه به‌منظور ارزیابی تحمل به کمبود روی ژنوتیپ‌های ذرت و انتخاب مناسب‌ترین شاخص‌ها برای غربال ژنوتیپ‌های متحمل به کمبود روی انجام شد. در این آزمایش 93 ژنوتیپ ذرت در قالب طرح آلفا لاتیس در شرایط بهینه و کمبود روی با دو تکرار در مرکز تحقیقات کشاورزی و منابع طبیعی سیستان در 2 سال زراعی مورد مطالعه قرار گرفتند. بر اساس عملکرد دانه ژنوتیپ‌های ذرت در شرایط بهینه و کمبود روی، ده شاخص گزینش برای تحمل به کمبود روی شامل شاخص تحمل (TOL)، شاخص میانگین بهره‌وری (MP)، شاخص میانگین هندسی بهره‌وری (GMP)، شاخص تحمل به تنش (STI)، شاخص تحمل غیرزیستی (ATI)، شاخص حساسیت به تنش (SSI)، شاخص مقاومت به تنش خشکی (DI)، میانگین هارمونیک (HM)، شاخص تحمل به تنش تغییر یافته در شرایط نرمال (MPSTI)، شاخص تحمل به تنش تغییر یافته در شرایط تنش (MSSTI) محاسبه شدند. نتایج نشان داد که تنوع ژنتیکی گسترده‌ای در بین ژنوتیپ‌های مورد مطالعه از لحاظ عملکرد دانه و شاخص‌های تحمل وجود دارد. شاخص‌های MP، GMP، STI و HM بالاترین میزان همبستگی مثبت و معنی‌دار را با عملکرد دانه در هر دو شرایط بهینه و کمبود روی نشان دادند. بر اساس نمودار سه‌بعدی ژنوتیپ‌های متحمل به کمبود روی با عملکرد بالا در هر دو شرایط بهینه و کمبود روی تفکیک شدند. بر اساس نتایج، ژنوتیپ‌های Ma004, Ma027, Ma028, Ma038, Ma045, Ma083, Ma091, Ma105, Ma115 به‌عنوان ژنوتیپ‌های ذرت متحمل به کمبود روی که فقط در شرایط کمبود روی عملکرد بالایی دارند جهت استفاده در برنامه‌های به‌نژادی در راستای بهبود و تحمل به کمبود روی معرفی می‌شوند.

کلیدواژه‌ها

موضوعات

Afshari, R., Sabouri, A., Esfahani, M., Kafi Ghasemi, A., 2017. Evaluation of tolerance of rice (Oryza sativa L.) genotypes using tolerance indices and biplot analysis. Iranian Journal of Field Crop Science. 48, 843–854. [In Persian with English Summary] https://doi.org/10.22059/ijfcs.2017.215828.654176
Alloway, B.J., 2008. Zinc in Soils and Crop Nutrition, Second edition. International fertilizer Industry Association and International Zinc Association, Brussels, Belgium.
Arzhang, S., Darvishzadeh, R., Alipour, H., 2023. Screening of maize (Zea mays L.) lines using selection indices for salinity stress tolerance. Environmental Stresses in Crop Sciences. 16, 949-967. [In Persian with English Summary]. https://doi.org/10.22077/escs.2023.5194.2120
Beigzadeh, N., Rashidi, V., 2016. Evaluation of agro-physiological traits of bean genotypes under drought stress and non-stress conditions at reproductive stage. Seed and Plant Journal. 32, 215-230. [In Persian with English Summary]
Bidinger, F., Mahalakshmi, V., Rao, G.D.P., 1987. Assessment of drought resistance in pearl millet (Pennisetum americanum L. Leeke). II. Estimation of genotype response to stress. Australian Journal of Agricultural Research. 38, 49–59. https://doi.org/10.1071/AR9870049
Blasco, B., Navarro-León, E., Ruiz, J. M., 2018. Oxidative stress in relation with micronutrient deficiency or toxicity. In: Hussain, M.A., Kamiya, T., Burritt, D.J., Tran, L.P., Fujiwara, T. (eds.), Plant Micronutrient Use Efficiency. Academic Press, United Kingdom, pp. 181–194. https://doi.org/10.1016/B978-0-12-812104-7.00011-3
Blum, A., 1988. Plant Breeding for Stress Environment. CRC Press., Boca Raton. https://doi.org/10.1201/9781351075718
Bonea, D., 2020. Grain yield and drought tolerance indices of maize hybrids. Notulea Scientia Biologicea. 12, 376-386. https://doi.org/10.15835/nsb12210683
Cakmak, I., Graham, R., Welch, R. M., 2002. Agricultural and molecular genetic approaches to improving nutrition and preventing micronutrient malnutrition globally. In: Cakmak, I.,  Welch, R.M. (eds.), Encyclopedia of Life Support Systems. Eolss Publishers, Oxford, pp. 1075-1099
Cakmak, I., Kutman, U., 2018. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science. 69, 172-180. https://doi.org/10.1111/ejss.12437
Darvishzadeh, R., Pirzad, A., Hatami-Maleki, H., Poormohammad Kiani, S., Sarrafi, A., 2010. Evaluation of the reaction of sunflower inbred lines and their F1 hybrids to drought conditions using various stress tolerance indices. Spanish Journal of Agricultural Research. 8, 1037-1046. https://doi.org/10.5424/sjar/2010084-1398
Erfani, F., Shokrpour, M., Momeni, A., Erfani, A., 2013. Evaluation of drought tolerance in rice varieties using yield-based indices at vegetative and reproductive stage. Journal of Agricultural Science and Sustainable Production. 22 (4), 135-147. [In Persian with English Summary]
Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Shooshtari, L., Yousefiazarkhanian, M., morAdkhAni, H., 2019. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Research Communications. 47, 170–181. https://doi.org/10.1556/0806.46.2018.057
Farshadfar, E., Sutka, J., 2002. Screening drought tolerance criteria in maize. Acta Agronomica Hungarica. 50, 411-416. https://doi.org/10.1556/AAgr.50.2002.4.3
Farshadfar, A., 2000. Selection for drought resistance in bread wheat lines. Agricultural Sciences and Technology. 14, 161-171. [In Persian with English Summary]
Feizi, M., Solouki, M., Sadeghzadeh, B., Fakheri, B., Mohammadi, S.A., 2020. Evaluation of drought tolerance indices for barley landraces under irrigated and dry conditions. Bioscience Journal, 36, 1518-1527. https://doi.org/10.1071/AR9780897
Fernandez, G.C.J., 1992. Effective selection criteria for assessing plant stress tolerance. In: Kuo, C.G. (ed.), Proceedings of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress. AVRDC Publication, Tainan,  pp. 257- 270.
Fischer, R., Maurer, R.,1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29, 897–912. https://doi.org/10.1071/AR9780897
Geravandi, M., Farshadfar, E., Kahrizi, D., 2010. Evalution of drought tolerance in bread wheat advanced genotypes in field laboratory conditions. Seed and Plant Improvment Journal. 26, 233-252. [In Persian with English Summary]
Golparvar, A., Majidi Harvan, I., Ghassemi Pirbaloti, E., 2003. Genetic improvement yield potential and water stress resistance in wheat genotypes (Triticum aestivum). Journal of Research in Agricultural Science. 13, 13–21. [In Persian with English Summary]
Hanway, J., 1982. How a Corn Plant Develops. Special Report No. 48, Iowa State University of Science and Technology, Cooperative Extension Service.
Hotz, C., Brown, K.H., 2004. Assessment of the risk of zinc deficiency in populations and options for itscontrol. Food Nutrition Bulletin. 25, 94–204. https://doi.org/10.4067/S0717-75182010000200014
Kamrani, M., Mehraban, A., Shiri, M., 2018. Identification of drought tolerant genotypes in dryland wheat using drought tolerance indices. Journal of Crop Breeding. 10, 13–26. [In Persian with English Summary]. https://doi.org/10.29252/jcb.10.28.13
Kandel, M., Ghimire, S.K., Ojha, B.R., Shrestha, J., 2019. Evaluation of heat stress tolerance indices in maize inbred lines. Malaysian Journal of Applied Sciences. 4, 57-68
Kazerani, B., navabpour, S., Sabouri, Sabouri., Ramezanpour, S.S., Zaynali Nezhad, KH., Eskandari, A., 2019. Evaluation and selection of rice mutant lines based on drought tolerance indices. Journal of Plant production. 25, 15-31. [In Persian with English Summary]. https://doi.org/10.22069/jopp.2018.13685.2228
Lan, J., 1998. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric Boreali-Occidentalis Sinica. 7, 85-87.
Lestari, A.P., Suwarno, Trikoesoemaningtyas, Sopandie, D., Aswidinnoor, H., 2019. Estimation for stress tolerance indices of rice genotypes in low nitrogen condition. The Agricultural Science Society of Thailand. 52, 180-190
Marschner, H., 1995. Mineral Nutrition of Higher Plants. Second edition. London, Academic Press.
Mehraban, A., Tobe, A., Gholipouri, A., Amiri, E., Ghafari, A., Rostaii, M., 2018. Evaluation of drought tolerance indices and yield stability of wheat cultivars to drought stress in different growth stage. World Journal of Environmental Biosciences. 7, 8-14.
Mitra, J., 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science. 80, 758-763.
Molla Heydari Bafghi, R., Baghizadeh, A., Mohammadinezhad, G., 2017. Evaluation of salinity and drought stresses tolerance in wheat genotypes using tolerance indices. Journal of Crop Breeding. 9, 27–34. [In Persian with English Summary]
Moosavi, S.S., Yazdi Samadi, B., Naghavi, M.R., Zali, A.A., Dashti, H., Pourshahbazi, A., 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert. 12, 165-178. [In Persian with English Summary]. https://doi.org/10.22059/jdesert.2008.27115
Pandey, N., Gupta, B., Pathak, G.C. 2012. Antioxidant responses of pea genotypes to zinc deficiency. Russian Journal of Plant Physiology. 59, 198-205. https://doi.org/10.1134/S1021443712010141
Pour‐Aboughadareh, A., Yousefian, M., Moradkhani, H., Moghaddam Vahed, M., Poczai, P., Siddique, K.H.M., 2019. iPASTIC: An online toolkit to estimate plant abiotic stress indices. Applications in Plant Sciences, 7, p.e11278. https://doi.org/10.1002/aps3.11278
Rosielle, A., Hamblin, J., 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science. 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
Sadeghzadeh, B., 2015. Soil-zinc application required to improve bread and durum wheat production under cold rainfed conditions.Iranian Dryland Agronomy Journal. 4, 149-162. [In Persian with English Summary]. https://doi.org/10.22092/idaj. 2016.106098
Safaei Chaeikar, S., Rabiei, B., Samizadeh, H., Esfahani, M., 2008. Evaluation of tolerance to terminal drought stress in rice (Oryza Sativa L.) genotypes. Iranian Journal of Field Crop Science. 9, 315-331. [In Persian with English Summary]
Shahrokhi, M., Khavari Khorasani, S., Ebrahimi, A., 2020. Evaluation of drought tolerance indices for screening some of super sweet maize (Zea mays L. var. saccharata) inbred lines. AGRIVITA Journal of Agricultural Science. 42(3), 435-448. http://doi.org/10.17503/agrivita.v42i3.2574
Soleimani, A., Bihamta, M.R., Peyghambari, S.A., Maali Amiri, R., 2019. Evaluation of late season drought in barley genotypes using some drought tolerance indices. Journal of Crop Breeding. 9, 166–176. [In Persian with English Summary]. https://doi.org/10.29252/jcb.9.23.166
Tabkhkar, N., Rabiei, B., Samizadeh Lahiji, H., Hosseini Chaleshtori, M., 2018. Assessment of rice genotypes response to drought stress at the early reproductive stage using stress tolerance indices. Journal of Crop Production and Processing. 7, 83–106. [In Persian with English Summary]. https://doi.org/10.29252/jcpp.7.4.83
Tahmasbali, M., Darvishzadeh, R., Fayaz Moghaddam, A., Alipour, H., 2021. Selection of tolerant genotypes to broomrape Orobanche cernua stress in oriental tobacco Nicotiana tabacum genotypes using stress tolerance indices. Journal of Applid Research in Plant Protection. 9, 83-100. [In Persian with English Summary]. https://doi.org/10.22034/arpp.2021.12247
Ullah, A., Farooq, M., Hussain, M., 2019. Improving the productivity, profitability and grain quality of Kabuli chickpea with co-application of zinc and endophyte bacteria Enterobacter sp. MN17. Archives of Agronomy and Soil Science. 66, 897-912. https://doi.org/10.1080/03650340.2019.1644501
White P.J., Pongrac, P., 2017. Heavy-metal toxicity in plants. In: Shabala, S. (ed), Plant Stress Physiology. Cabi, Wallingford UK, pp. 300-331. https://doi.org/10.1079/9781780647296.0300