نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

2 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

چکیده

اصلاح ارقام متحمل به شوری از راهکارهای مناسب جهت کاهش اثرات شوری است. این پژوهش به‌منظور تعیین متحمل‏ترین ژنوتیپ‏های گندم به سطوح مختلف شوری انجام گردید. آزمایش فاکتوریل، در قالب طرح کاملاً تصادفی با سه تکرار در شرایط نور و دمای طبیعی محیط در گلخانه انجام شد. فاکتورهای آزمایش شامل ژنوتیپ‏های سیستان، نارین، برات، سارنگ، شوش، آینه، سحر، مهرگان، Ms-90-15، Ms-92-8، Ms-93-5،Ms-93-6،Ms-93-14، Ms-93-16 و S-94-12 و آب با شورهای 1، 10 و 16 دسی ‏زیمنس بر متر بودند. کمترین محتوای سدیم برگ، نشت یونی و بیشترین پتاسیم برگ در ارقام مهرگان و سارنگ مشاهده شد. در شوری ملایم، S-94-12 و MS-92-8 به ترتیب کمترین و بیشترین درصد کاهش عملکرد دانه را نسبت به محیط بدون شوری داشتند. برای شوری شدید چنین مقادیری در مهرگان و MS-93-6 مشاهده شد. بررسی روابط بین ژنوتیپ‌ها با استفاده از روش تجزیه بای‌پلات و شاخص‌های تحمل به شوری نشان داد که شاخص‌های MP، GMP، HM و STI همبستگی مثبت و معنی‏داری با عملکرد گندم در تمام سطوح دارند. کاربرد آب شور 10 دسی‌زیمنس بر متر باعث کاهش عملکرد دانه ژنوتیپ‏های سیستان، نارین، Ms-90-15، Ms-92-8، Ms-93-5،Ms-93-6،Ms-93-14 و Ms-93-16، برات، سارنگ، شوش، آینه، سحر، مهرگان و ‌S-94-12 به ترتیب به میزان 32.6، 36.2، 24، 40.5، 29.8، 32.5، 32.3، 26، 27.3، 30.5، 36.6، 21.7، 26.8، 30.2 و 15.6 درصد در مقایسه با شاهد گردید. این مقادیر برای شوری 16 دسی‌زیمنس بر متر به ترتیب 47.3، 56.3، 47.8، 50.6، 57، 65.4، 56.2، 50.2، 51.2، 50.5، 46.6، 50.8، 47.3، 43.4 و 48.8 درصد بود. بر اساس شاخص‌های تحمل به تنش و شاخص انتخاب SIIG، ژنوتیپ‏های مهرگان، سارنگ، برات و S-94-12، عملکرد بهتری تحت شرایط شور داشتند. علت این امر می‌تواند سازگاری بیشتر این ارقام به شرایط اقلیمی منطقه در مقایسه با سایر ارقام موردبررسی باشد.

کلیدواژه‌ها

موضوعات

 
 Ahmad, R., Hussain, S., Anjum, M.A., Khalid, M.F., Saqib, M., Zakir, I., Hassan, A., Fahad, S., Ahmad, S., 2019. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 191-205. https://doi.org/10.1007/978-3-030-06118-0_8
Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O.A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., Schillaci, C., Ali, N., Al-Doss, A., 2021. Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy. 11, 2299. https://doi.org/10.3390/agronomy11112299
Amiri, R., Bahraminejad, S., Sasani, S. Ghobadi, M., 2014. Genetic evaluation of 80 irrigated bread wheat genotypes for drought tolerance indices. Bulgarian Journal of Agricultural Science. 20, 101-111. http://agrojournal.org/20/01-17.pdf
Arora, N. K., 2019. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability. 2, 95–96. https://doi.org/10.1007/s42398-019-00078-w
Askar, M., Yazdansepas, A., Amini. A., 2011. Evaluation of winter and facultative bread wheat genotypes under irrigated and post-anthesis drought stress conditions. Seed and Plant Improvement Journal 26, 313-329. [In Persian]. https://sid.ir/paper/146990/en
Bouslama, M., Schapaugh, W. T., 1984. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science. 24, 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x
Choukan, R., Taherkhani, T., Ghannadha, M. R., Khodarahmi, M., 2006. Evaluation of drought tolerance in grain maize inbred lines using drought tolerance indices. Iranian Journal of Crop Science. 8, 79-89. [In Persian]. http://dorl.net/dor/20.1001.1.15625540.1385.8.1.7.6
 Elfanah, A.M., Darwish, M.A., Selim, A.I., Shabana, M.M., Elmoselhy, O.M., Khedr, R.A., Ali, A.M., Abdelhamid, M.T., 2023. Spectral reflectance indices’ performance to identify seawater salinity tolerance in bread wheat genotypes using genotype by yield* trait biplot approach. Agronomy. 13, 353. https://doi.org/10.3390/agronomy13020353
Farhangian-Kashani, S., Azadi, A., Khaghani, S., Changizi, M., Gomarian, M., 2021. Association analysis and evaluation of genetic diversity in wheat genotypes using SSR markers. Biologia Futura. 72, 441-452. https://doi.org/10.1007/s42977-021-00088-y
Farshadfar, E., Poursiahbidi, M. M. Safavi, S. M., 2018. Assessment of drought tolerance in landraces of bread wheat based on resistance/tolerance indices. International Journal of Advanced Biological and Biomedical Research. 1, 143-158. https://www.ijabbr.com/article_33588_6a397d1346494ba7c0c3f78d97cdf663.pdf
Fernandez, G., 1992. Effective selection criteria for assessing plant stress tolerance. In: Kuo, C. G. (ed.). Proceeding of the international symposium on adaptation of vegetable and other food crops to temperature and water stress. Taiwan, 13-18 August. pp: 257-270. https://doi.org/10.22001/wvc.72511
Fischer, R. A., Wood, T., 1979. Drought resistance in spring wheat cultivars ІІІ. Yield association with morphological traits. Australian Journal of Agricultural Research. 30, 1001-1020. https://doi.org/10.1071/AR9791001
Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., Borghi, B., 1997. Evaluation of field and laboratory predictors of drought and heat stress in winter cereals. Canadian Journal of Plant Science. 77, 523-531. https://doi.org/10.4141/P96-130
Giraldo, P., Benavente, E., Manzano-Agugliaro, F., Gimenez, E., 2019. Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy. 9, 352. https://doi.org/10.3390/agronomy9070352
Houshmand, S., A. Arzani, S.A. Maibody., M. Feizi., 2005. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Research. 91, 345-354. https://doi.org/10.1016/j.fcr.2004.08.004
Hu, P., Zheng, Q., Luo, Q., Teng, W., Li, H., Li, B., Li, Z., 2021. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biology. 21, 1-20. https://doi.org/10.1186/s12870-020-02799-1
Igrejas, G., Branlard, G., 2020. The importance of wheat. Wheat Quality For Improving Processing And Human Health. Springer, pp. 1-7. https://doi.org/10.1007/978-3-030-34163-3
James, R. A., Rivelli, A. R., Munns, R., von Caemmerer, S., 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 29, 1393-1403. https://doi.org/10.1071/FP02069
Ma, Y., Dias, M.C., Freitas, H. 2020. Drought and salinity stress sesponses and microbe-induced tolerance in plants. Frontiers in Plant Science. 11, 591911. https://doi.org/10.3389/fpls.2020.591911
Miransari, M., Smith, D., 2019. Sustainable wheat (Triticum aestivum L.) production in saline fields: a review. Critical Reviews in Biotechnology. 39, 999-1014. https://doi.org/10.1080/07388551.2019.1654973
Mohammadi, M., Karimizadeh, R., Abdipour, M., 2011. Evaluation of drought tolerance in bread wheat genotypes under dryland and supplemental irrigation conditions. Australian Journal of Crop Science. 5, 487-493. https://search.informit.org/doi/10.3316/informit.281651288962837
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Mushtaq, Z., Faizan, S., Gulzar, B., 2020. Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology 8, 81-91. https://doi.org/10.7324/JABB.2020.80315
Ndiate, N.I., Saeed, Q., Haider, F.U., Liqun, C., Nkoh, J.N., Mustafa, A., 2021. Co-application of biochar and arbuscular mycorrhizal fungi improves salinity tolerance, growth and lipid metabolism of maize (Zea mays L.) in an alkaline soil. Plants. 10, 2490. https://doi.org/10.3390/plants10112490
Netondo, G. W., Onyango, J. C., Beck, E., 2004. Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science. 44, 806. https://doi.org/10.2135/cropsci2004.8060
Patterson, B., Macrae, E., Ferguson, I., 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Annual Biochemical. 139, 487-492. https://doi.org/10.1016/0003-2697(84)90039-3
Pour-Aboughadareh, A., Mehrvar, M.R., Sanjani, S., Amini, A., Nikkhah-Chamanabad, H., Asadi, A., 2021. Effects of salinity stress on seedling biomass, physiochemical properties, and grain yield in different breeding wheat genotypes. Acta Physiologiae Plantarum 43, 1-14. https://doi.org/10.1007/s11738-021-03265-7
Ramadas, S., Kumar, T., Singh, G.P., 2020. Wheat production in India: Trends and prospects. Recent Advances in Grain Crops Research. https://doi.org/10.5772/intechopen.86341
Rosielle, A., J. Hamblin., 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science. 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
Sairam, R.K., Dharmar, K., Chinnusamy, V., Meena, R.C., 2009. Water logging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mug bean (Vigna radiata). Journal of Plant Physiology. 6, 602-616. https://doi.org/10.1016/j.jplph.2008.09.005
Shahmoradi, SH., and Zahravi, M., 2016. Evaluation of drought tolerance in barley (Hordeum vulgare L.) germplasm from warm and dry climates of Iran. Seed and Plant Improvement Journal. 32, 181-200 [In Persian]. https://doi.org/10.22092/spij.2017.111296
Shen, Z., Pu, X., Wang, S., Dong, X., Cheng, X., Cheng, M., 2022. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake. Scientific Reports. 12, 5089. https://doi.org/10.1038/s41598-022-09061-8
Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., Mohammadi, V., 2006. Evaluation of drought resistance indices under various environmental conditioning. Field Crop Research. 98, 222-229. https://doi.org/10.1016/j.fcr.2006.02.001
Tahmasebi, S., M. Dastfal, H. Zali., M. Rajaei. 2018. Drought tolerance evaluation of bread wheat cultivars and promising lines in warm and dry climate of the south. Cereal Research. 8, 209-225. https://doi.org/10.22124/c.2018.10434.1398
Talebi, R., Fayaz, F., Naji, A. M., 2009. Effective selection criteria for assessing drought stress tolerance in durum wheat. General and Applied Plant Physiology. 35, 64-74. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20133138198
Wu, H., Zhang, X., Giraldo, J. P., Shabala, S., 2018. It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil. 431, 1-17. https://doi.org/10.1007/s11104-018-3770-y
Yan, W., Kang, M.S., 2002. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (1st ed.). CRC Press. https://doi.org/10.1201/9781420040371
Yousofi, M., Rezaei, A. M., 2008. Assessment of drought tolerance in different breeding lines of wheat (Triticum aestivum L.). Journal of Science and Technology of Agriculture and Natural Resources. 42, 113-122. [In Persian]. http://dorl.net/dor/20.1001.1.22518517.1386.11.42.10.9
Zali, H., Barati, A., 2020. Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding. 12, 93–104. ‎ http://dx.doi.org/10.29252/jcb.12.34.93
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., Hoseini, S. M., 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum – An International Journal. 7, 703-711. https://www.researchtrend.net/bfij/pdf/117%20HASSAN%20ZALI.pdf
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., Zeinalabedini, M., 2016. Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding. 78 , 77-90. [In Persian]‎ http://dorl.net/dor/20.1001.1.22286128.1395.8.20.7.4