Ahmad, R., Hussain, S., Anjum, M.A., Khalid, M.F., Saqib, M., Zakir, I., Hassan, A., Fahad, S., Ahmad, S., 2019. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 191-205.
https://doi.org/10.1007/978-3-030-06118-0_8
Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O.A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., Schillaci, C., Ali, N., Al-Doss, A., 2021. Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy. 11, 2299.
https://doi.org/10.3390/agronomy11112299
Amiri, R., Bahraminejad, S., Sasani, S. Ghobadi, M., 2014. Genetic evaluation of 80 irrigated bread wheat genotypes for drought tolerance indices. Bulgarian Journal of Agricultural Science. 20, 101-111.
http://agrojournal.org/20/01-17.pdf
Askar, M., Yazdansepas, A., Amini. A., 2011. Evaluation of winter and facultative bread wheat genotypes under irrigated and post-anthesis drought stress conditions. Seed and Plant Improvement Journal 26, 313-329. [In Persian].
https://sid.ir/paper/146990/en
Choukan, R., Taherkhani, T., Ghannadha, M. R., Khodarahmi, M., 2006. Evaluation of drought tolerance in grain maize inbred lines using drought tolerance indices. Iranian Journal of Crop Science. 8, 79-89. [In Persian].
http://dorl.net/dor/20.1001.1.15625540.1385.8.1.7.6
Elfanah, A.M., Darwish, M.A., Selim, A.I., Shabana, M.M., Elmoselhy, O.M., Khedr, R.A., Ali, A.M., Abdelhamid, M.T., 2023. Spectral reflectance indices’ performance to identify seawater salinity tolerance in bread wheat genotypes using genotype by yield* trait biplot approach. Agronomy. 13, 353.
https://doi.org/10.3390/agronomy13020353
Farhangian-Kashani, S., Azadi, A., Khaghani, S., Changizi, M., Gomarian, M., 2021. Association analysis and evaluation of genetic diversity in wheat genotypes using SSR markers. Biologia Futura. 72, 441-452.
https://doi.org/10.1007/s42977-021-00088-y
Fernandez, G., 1992. Effective selection criteria for assessing plant stress tolerance. In: Kuo, C. G. (ed.). Proceeding of the international symposium on adaptation of vegetable and other food crops to temperature and water stress. Taiwan, 13-18 August. pp: 257-270.
https://doi.org/10.22001/wvc.72511
Fischer, R. A., Wood, T., 1979. Drought resistance in spring wheat cultivars ІІІ. Yield association with morphological traits. Australian Journal of Agricultural Research. 30, 1001-1020.
https://doi.org/10.1071/AR9791001
Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., Borghi, B., 1997. Evaluation of field and laboratory predictors of drought and heat stress in winter cereals. Canadian Journal of Plant Science. 77, 523-531.
https://doi.org/10.4141/P96-130
Giraldo, P., Benavente, E., Manzano-Agugliaro, F., Gimenez, E., 2019. Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy. 9, 352.
https://doi.org/10.3390/agronomy9070352
Houshmand, S., A. Arzani, S.A. Maibody., M. Feizi., 2005. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Research. 91, 345-354.
https://doi.org/10.1016/j.fcr.2004.08.004
Hu, P., Zheng, Q., Luo, Q., Teng, W., Li, H., Li, B., Li, Z., 2021. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biology. 21, 1-20.
https://doi.org/10.1186/s12870-020-02799-1
James, R. A., Rivelli, A. R., Munns, R., von Caemmerer, S., 2002. Factors affecting CO
2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 29, 1393-1403.
https://doi.org/10.1071/FP02069
Mushtaq, Z., Faizan, S., Gulzar, B., 2020. Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology 8, 81-91.
https://doi.org/10.7324/JABB.2020.80315
Ndiate, N.I., Saeed, Q., Haider, F.U., Liqun, C., Nkoh, J.N., Mustafa, A., 2021. Co-application of biochar and arbuscular mycorrhizal fungi improves salinity tolerance, growth and lipid metabolism of maize (Z
ea mays L.) in an alkaline soil. Plants. 10, 2490.
https://doi.org/10.3390/plants10112490
Netondo, G. W., Onyango, J. C., Beck, E., 2004. Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science. 44, 806.
https://doi.org/10.2135/cropsci2004.8060
Pour-Aboughadareh, A., Mehrvar, M.R., Sanjani, S., Amini, A., Nikkhah-Chamanabad, H., Asadi, A., 2021. Effects of salinity stress on seedling biomass, physiochemical properties, and grain yield in different breeding wheat genotypes. Acta Physiologiae Plantarum 43, 1-14.
https://doi.org/10.1007/s11738-021-03265-7
Sairam, R.K., Dharmar, K., Chinnusamy, V., Meena, R.C., 2009. Water logging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mug bean (
Vigna radiata). Journal of Plant Physiology. 6, 602-616.
https://doi.org/10.1016/j.jplph.2008.09.005
Shahmoradi, SH., and Zahravi, M., 2016. Evaluation of drought tolerance in barley (
Hordeum vulgare L.) germplasm from warm and dry climates of Iran. Seed and Plant Improvement Journal. 32, 181-200 [In Persian].
https://doi.org/10.22092/spij.2017.111296
Shen, Z., Pu, X., Wang, S., Dong, X., Cheng, X., Cheng, M., 2022. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na
+ uptake. Scientific Reports. 12, 5089.
https://doi.org/10.1038/s41598-022-09061-8
Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., Mohammadi, V., 2006. Evaluation of drought resistance indices under various environmental conditioning. Field Crop Research. 98, 222-229.
https://doi.org/10.1016/j.fcr.2006.02.001
Tahmasebi, S., M. Dastfal, H. Zali., M. Rajaei. 2018. Drought tolerance evaluation of bread wheat cultivars and promising lines in warm and dry climate of the south. Cereal Research. 8, 209-225.
https://doi.org/10.22124/c.2018.10434.1398
Wu, H., Zhang, X., Giraldo, J. P., Shabala, S., 2018. It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil. 431, 1-17.
https://doi.org/10.1007/s11104-018-3770-y
Yousofi, M., Rezaei, A. M., 2008. Assessment of drought tolerance in different breeding lines of wheat (
Triticum aestivum L.). Journal of Science and Technology of Agriculture and Natural Resources. 42, 113-122. [In Persian].
http://dorl.net/dor/20.1001.1.22518517.1386.11.42.10.9
Zali, H., Barati, A., 2020. Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding. 12, 93–104.
http://dx.doi.org/10.29252/jcb.12.34.93
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., Hoseini, S. M., 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum – An International Journal. 7, 703-711.
https://www.researchtrend.net/bfij/pdf/117%20HASSAN%20ZALI.pdf
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., Zeinalabedini, M., 2016. Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding. 78 , 77-90. [In Persian]
http://dorl.net/dor/20.1001.1.22286128.1395.8.20.7.4