نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی گیاهان زراعی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان

2 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان

3 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه محقق اردبیلی، اردبیل

4 دانشیار، گروه علوم خاک، دانشگاه محقق اردبیلی، اردبیل

10.22077/escs.2024.6591.2230

چکیده

دانه لوبیا منبع عالی مواد مغذی در رژیم غذایی بشر در بسیاری از کشورها به شمار می‌رود. پژوهشی گلخانه‌ای به صورت آزمایش فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در دو سال متوالی در چهار تکرار در دانشکده کشاورزی دانشگاه محقق اردبیلی در سال های 1401-1400 و 1402-1401 اجرا گردید. فاکتورها شامل بیوچار آلی (تهیه شده از بید جنگلی) در چهار سطح (شاهد بدون بیوچار، بیوچار اولیه 2.5 درصد وزنی در خاک و بیوچار اصلاح شده با فسفریک اسید و سولفوریک اسید 1.25 درصد وزنی در خاک) محلول پاشی سالیسیلیک اسید در سه سطح (شاهد بدون محلول پاشی، 0.5 و 1 میلی‌مولار) و شوری در سه سطح (0 ،4 و 8 دسی زیمنس بر متر) بودند. بالاترین ارتفاع بوته در سال اول و دوم آزمایش به ترتیب از تیمار 0.5 و یک میلی‌مولار سالیسیلیک اسید توأم با کاربرد بیوچار اولیه 2.5 درصد وزنی در شرایط عدم تنش شوری خاک به میزان 45.45 درصد نسبت به تیمار شاهد به دست آمد. کاربرد 0.5 میلی‌مولار سالیسیلیک اسید با بیوچار اصلاح شده با فسفریک اسید در شرایط عدم شوری بالاترین تعداد برگ در بوته (20.1 عدد) را موجب شد. با افزایش غلظت شوری خاک، وزن خشک بوته لوبیا به طور معنی‌دار (72 درصد نسبت به تیمار شاهد) کاهش نشان داد. در شوری 8 دسی زیمنس بر متر، کاربرد سالیسیلیک اسید بالاخص توام با کاربرد بیوچار اولیه موجب بهبود دانه در غلاف ( 90.30 درصد) گردید. بالاترین تعداد گره در ریشه (11.3 گره) متعلق به ترکیب تیماری کاربرد 0.5 میلی‌مولار سالیسلیک اسید توأم با مصرف بیوچار ساده در شرایط عدم اعمال تنش شوری در خاک بود . مقدار افزایش 15.28 درصد نسبت به تیمار شاهد بود. کاربرد سالیسیلیک اسید در مقدار یک میلی‌مولار بدون کاربرد بیوچار و تحت شرایط شوری شدید، بالاترین وزن خشک ریشه به میزان 52.98 درصد نسبت به شاهد را موجب شد.

کلیدواژه‌ها

موضوعات

Abbasnasab, Z., Abedi, M., Sadati, S.E., 2021. Effect of biochar on some morphological and physiological traits in Medicago sativa L. and Bromus tomentellus L. Journal of Plant Process and Function. 10, 145-156. [In Persian with English Summary]. http://dorl.net/dor/20.1001.1.23222727.1400.10.41.4.4
Akhtar, S.S., Andersen, M.N., Liu, F., 2015. Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science. 201, 368-378. https://doi.org/10.1111/jac.12132
Awad, Y.M., Lee, S.E., Ahmed, M.B.M., Vu, N.T., Farooq, M., Kim, S., Kim, H.S., Vithanage, M., Usman, A.R.A., Al-Wabel, M., Kwon, E.E., Ok, Y.S., 2017. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production. 156, 581-588. https://doi.org/10.1016/j.jclepro
Azder Afshari, M., Shekari, F., Afsahi, K. and Azim Khani, R., 2016. The effect of foliar application of salicylic acid on dry weight, harvest index, yield and yield components of cowpea (Vigna unguicaultata L.) under water stress. Environmental Stresses in Crop Sciences. 9, 51-58. [In Persian with English Summary]. https://doi.org/10.22077/escs.2016.299
Biria, M., Moezzi, A.A., AmeriKhah, H., 2017. Effect of sugarcane bagasse made biochar on maize plant growth, grown in lead and cadmium contaminated soil. Journal of Water and Soil. 31, 609-626 [In Persian with English Summary]. https://doi.org/10.22067/jsw.v31i2.55832
Darvizheh, H., Zahedi, M., Abbaszadeh, B., 2019. Effects of Foliar Application of Salicylic Acid and Spermine on the Growth & Root Morphological Characteristics of Purple Coneflower (Echinacea purpurea L.) Under Drought.Stress. Journal of Plant Process and Function. 8, 225-242. [In Persian with English Summary]. https://doi.org/10.22092/ijmapr.2019.124085.2433
Gulati, P., Rose, D. J.1., 2018. Effect of extrusion on folic acid concentration and mineral element dialyzability in Great Northern beans (Phaseolus vulgaris L.). Food Chemistry. 269, 118-124. https://doi.org/10.1016/j.foodchem.2018.06.124
Hejazi Zadeh, A., Gholamalizadeh Ahangar, A., Ghorbani, M., 2016. Effect of biochar on lead and cadmium absorption of sewage black mud of paper factories by sunflower. Water and Soil Science. 26(2), 259-271 [In Persian with English Summary].
Ijaz, M., Sher, A., Sattar, A., Shahid, M., Nawaz, A., Ul-Allah, S., Tahir, M., Ahmad,S., Saqib, M., 2019. Response of canola (Brassica napus L.) to exogenous application of nitrogen, salicylic acid and gibberellic acid under an arid climate. Soil and Environment. 38, 90-96. https://doi.org/10.25252/SE/19/71619
Islam, M.S., Roy, H., Afrose, S., 2022. Phosphoric acid surface modified Moringa oleifra L. leaves biochar for the sequestration of methyl orange from aqueous solution: characterizations, isotherm, and kinetics analysis. Remediation Journal., 32, 281-298. https://doi.org/10.1002/rem.21733
Jayakanan, M., Bose, J., Babourina, O., Rengel, Z., Shabala, S., 2015. Salicylic acid in plant salinity stress signaling and tolerance. Plant Growth Regulation, 76, 25-40. https://doi.org/10.1007/s10725-015-0028-z
Kang, G., Li, G., Xu, W., Peng, X., Han, Q., Zhu, Y., 2012. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Journal of Proteome Research. 11, 6066-6079. https://doi.org/10.1021/pr300728y
Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., and Mazhar, R., 2017.Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition. 41, 1-13, https://doi.org/10.1080/01904167.2017.1392568
Kazemi, R., Ronaghi, A., Yasrebi, J., Ghasemi-Fasaei, R., Zarei, M., 2019. Influence of poultry manure and its biochar, Funneli formismosseae and salinity stress on corn yield and micronutrients concentration. Iranian Agricultural Research. 38, 37-46. [In Persian with English Summary].  https://doi.org/10.22099/IAR. 2019.5458
Kheirkhah, M., Farazi, M., Dadkhah, A., Khoshnood, A., 2016. Application of glycine, tufool and salicylic acid in sugar beet (Beta vulgaris L.) under drought conditions. Journal of Crop Ecophysiology. 10, 167-182. [In Persian with English Summary]. https://sanad.iau.ir/en/Article/956549
Lashari, M.S., Ye, Y., Ji, H., Li, L., Kibue, G.W., Lu, H., & Pan, G., 2015. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2year field experiment. Journal of the Science of Food and Agriculture 95, 1321-1327. https://doi.org/10.1002/jsfa.6825
Mehdizadeh, L., Moghaddam, M., lakzian, A., 2019. Effect of biochar on growth characteristics and sodium to potassium ratio of summer savory (Satureja hortensis L.) under NaCl stress. Environmental Stresses in Crop Sciences. 12, 595-606. [In Persian with English Summary]. https://doi.org/10.22077/escs.2019.1419.1308
Patel, A., Khare, P., Patra, D.D., 2017. Biochar Mitigates Salinity Stress in Plants. P. 153-182. In: Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_6
Peng, X., Yang, B., Deng, D., Dong, J., Chen, Z., 2012. Lead tolerance and accumulation in three cultivars of Eucalyptus urophylla XE. grandis: implication for phytoremediation. Environmental Earth Sciences, 67, 1515-1520.
Petry, N., Boy, E., Wirth, J.P., Hurrell, R.F., 2015. The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients, 7, 1144-1173.‏ http://dx.doi.org/10.1007/s12665-012-1595-1
Razzaghi, F., Ahmadi, S.H., Adolf, V.I., Jensen, C.R., Jacobsen, S.E., Andersen, M.N., 2011. Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. Journal of Agronomy and Crop Science, 197, 348 - 360. [In Persian with English Summary]. https://doi.org/10.1111/j.1439-037X.2011.00473.x
Reginato, M., Travaglia, C., Reinoso, H., Garello, F., Luna, V., 2016. Salt mixtures induce anatomical modifications in the halophyte Prosopis strombulifera (Fabaceae: Mimosoideae). Flora. 218, 75–85, https://doi.org/10.1016/j.flora.2015.11.008
Sepehri, A., Abasi, R., Karami, R., 2016. Effect of drought stress and salicylic acid on yield and yield component of bean genotypes. 17, 503-516. [In Persian with English Summary]. https://doi.org/10.22059/jci.2015.55196
Vaccari, F.P., Maienza, A., Miglietta, F., Baronti, S., Lonardo, S.Di., Giagnoni, L., Lagomarsino, A., Pozzi, A., Pusceddu, E., Ranieri, R., Valboa, G., Genesio, L., 2015. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment, 207, 163-170. https://doi.org/10.1016/j.agee.2015.04.015
Yazdanpanah, M., Babaei Cheshme Maki, H., Bakhtiari, I., Goorkhorram, H., Samadi, A., 2015. Effect of salicylic acid, nano-iron chelate and pseudomonas on quality and quantity of rapeseed yield. Journal of Biodiversity and Environmental Sciences (JBES). 6, 310-317.
Zhang, H.J., Dong, H.Z., Li, W.J., Zhang, D. M., 2011. Effects of soil salinity and plant density on yield and leaf senescence of field grown cotton. Journal Agronomy Crop Science. 198, 27–37, https://doi.org/10.1111/j.1439-037X.2011.00481.x