Document Type : Original Article
Authors
1 PhD Student of Crop Physiology, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Professor, Department of Agronomy and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran.
Abstract
Introduction
Water stress is one of the most factor in growth and yield of mung bean in arid and semi-arid region .In arid and semi-arid osmotic stress, especially drought and salinity affect the production and crop yields. In many areas of climate change caused by long periods of temperatures and increased evaporation and transpiration, that changes in morpho-physiologic and biochemical wide drought is created. Mung (Vigna radiata L.) is one of the important plant source of protein (about 25%) numerous. It is the summer and a short growing season (90 to 120 days) for rainfed cultivation occurs in areas with high rainfall. Due to the short growing season of plants suitable for cultivation in many parts of the nitrogen fixation can be considered after wheat. The analysis suggests the difference on the morpho-physiological traits and phenological plant varieties under different humidity conditions .showing that drought stress on traits such as number of branches in all phenological stages, plant height, days to flowering and full treatment had a significant positive impact .The purpose of this study was to determine the genotypes of mung bean drought tolerance, drought tolerance threshold and identifying the physiological indicators of drought tolerance was carried out.
Materials and Methods
Field experiment in the spring of 2015 at the Agricultural Research Station, Ferdowsi University of Mashhad was conducted. Split plot experiment was conducted in a randomized complete block design. The main plots soil moisture regime: the lack of stress (80% FC), moderate stress (60% FC) and sever stress (40% FC) during the growing season and subplots five digits and Golden Line includes: Uzbek, Partow, Hindi, Line 73-726 a 73-726 B and who was prepared Safiabad Research center.
Results and Discussions
The results showed that, yield and yield components were significantly affected by deficit irrigation, Genotypes and their interaction. The results showed that, 726-73 a line was more resistant against the deficit irrigation applying in all treatment and produced higher grain yield and yield components and appearance of first flower, number of days from sowing to first pod maturity, number of days to maturity, number of day from appearance of first flower to full maturity were significantly affected by deficit irrigation, varieties and their interaction. The results showed that, high correlation between yield and number of pod per plant, number of seed in pod, harvest index, biological yield, number of branch in plant and length of pod.
Conclusion
The mung bean cultivars significant difference was observed in the records of phenological stages, also associated with increased drought stress reduced the duration of phenological records. The important point that seems to phenological stages after flowering to maturity stage could be an important basis for the implementation of corrective actions to improve performance in this plant. Improved soil moisture conditions increase plant performance machine, the low soil moisture conditions (40% FC) performance declined sharply that contrary to the perception in relation to the resistance of plants to drought stress is the machine. Vetch cultivars had the highest grain yield and harvest index was also A73-726 online. land and be a criterion for selection of varieties with higher yield.
Keywords