Ali, S.Y., Chaudhury, S., 2016. EDTA- enhanced phytoremediation by
Tagetes spp. and effect on bioconcentration and translocation of heavy metals. Environmental Processes. 3, 735-746.
https://doi.org/10.1007/s40710-016-0180-0
Amooaghaie, R., Zangene-madar, F., Enteshari, Sh., 2017. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in
Sesamum indicum under lead stress. Ecotoxicology and Environmental Safety. 139, 210-218.
https://doi.org/10.1016/j.ecoenv.2017.01.037
Bareen, F., Rafiq, K., Shafiq, M., Nazir, A., 2019. Uptake and leaching of Cu, Cd, and Cr after EDTA application in sand columns using sorghum and pearl millet. Polish Journal of Environmental Study. 28, 2065–2077
https://doi.org/10.15244/pjoes/84834
Bian, X., Cui, J., Tang, B., Yang, L. 2018 Chelant-induced phytoextraction of heavy metals from contaminated soils: A review. Polish Journal of Environmental Study. 27, 2417–2424.
https://doi.org/10.15244/pjoes/81207
Ebrahimi, M., Shahsavand, F., 2014. EDTA Enhanced phytoextraction capacity of
Scirpus maritimus L. grown on Pb-Cr contaminated soil and associated potential leaching risks. International Journal of Scientific Research in Environmental Sciences. 2, 379-388.
https://doi.org/10.1016/S0045-6535(01)00031-5
Eissa, M. A., Ghoneim. M. F., El- Gharably, G. A., El-Razek, M., 2014. Phytoextraction of nickel, lead and cadmium from metals contaminated soils using different field crops and EDTA. World Applied Sciences Journal. 32, 1045-1052
https://doi.org/10.5829/idosi.wasj.2014.32.06.912
Gee, G.W., Bauder J.W., 1986. Partical size analysis. In: A. Klute (ed.), Methods of Soil Analysis. Part 1. ASA and SSSA, Madison, WI. p. 383-411.
Hart, G., Koether, M., McElroy, T, Greipsson, S., 2022. Evaluation of chelating agents used in phytoextraction by switchgrass of lead contaminated soil. Plants. 11, 1012.
https://doi.org/10.3390/plants11081012
Hassan, M.U., Chattha, M.U., Khan, I. Chattha, M.B., Aamer, M., Nawaz, M., Ali, A. Khan, M. A. U., Khan, T. A., 2019. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environmental Science and Pollution Research. 26, 12673–12688.
https://doi.org/10.1007/s11356-019-04892-x
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid and peroxidation. Archive of Biochemistry and Biophysics. 125, 189–198.
https://doi.org/10.1016/0003-9861(68)90654-1
Heidari, J., Amooaghaie, R., Kiani, S., 2020. Impact of chitosan on nickel bioavailability in soil, the accumulation and tolerance of nickel in
Calendula tripterocarpa. International Journal of Phytoremediation 22, 1175–1184
https://doi.org/10.1080/15226514.2020.1748564
Hernández-Allica, J., Garbisu, C., Barrutia, O., Becerril, J. M., 2007. EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environmental and Experimental Botany. 60, 26–32.
https://doi.org/10.1016/j.envexpbot.2006.06.006
Jean, L., Bordas, F., Gautier-Moussard, C., Verhay, P. Hitmi, A., Bollinger, J. C., 2008. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by
Dature innoxia. Environmental Pollution. 15, 555-563.
https://doi.org/10.1016/j.envpol.2007.09.013
Krujatz, F., 2012. Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium
Pseudomonas brassicacearum. Water, Air and Soil Pollution. 223, 1281–1293.
https://doi.org/10.1007/s11270-011-0944-0
Knudsen, D., Peterson, G.A., Partt, P.F., 1982. Lithium, sodium, and potassium. In: A.L. Page
A.L. Page,
P.A. Helmke,
R.H. Loeppert,
P. N. Soltanpour,
M. A. Tabatabai,
C. T. Johnston,
M. E. Sumner (eds.) Methods of Soil Analysis. Part 2. ASA and SSSA, Madison, WI. p. 225–246.
https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Kaur, L., Sharma, S., Gadgil, K., 2019. Response of Indian mustard (
Brassica juncea arawali) plants under nickel stress with special reference to nickel phytoextraction potential. EQA - International Journal of Environmental Quality. 34, 17–33.
https://doi.org/10.6092/issn.2281-4485/8528
Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R., Zhang, Z., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety. 126, 111–121.
https://doi.org/10.1016/j.ecoenv.2015.12.023
Mohammadpour, G.H., Karbassi, A., Baghvand, A., 2016. Pollution intensity of nickel in agricultural soil of Hamedan region. Caspian Journal of Environment Science 14, 15.24
Mulvaney, R.L., 1996. Nitrogen–inorganic forms. In: D.L. Sparks,
A.L. Page,
P.A. Helmke,
R.H. Loeppert,
P. N. Soltanpour,
M. A. Tabatabai,
C. T. Johnston,
M. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 1123–1184.
https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Nabaei, M., Amooaghaie, R., 2020. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in
Catharanthus roseus L. G. Don. Environmental Science and Pollution Research. 27, 6981–6994.
https://doi.org/10.1007/s11356-019-07283-4
Nazmul Huda, A. K. M., Hossain, M., Mukta, R.H., Khatun, M. R., Haque, Md. A., 2021. EDTA-enhanced Cr detoxification and its potential toxicity in rice (
Oryza sativa L.). Plant Stress. 2, 100014
https://doi.org/10.1016/ j.stress.2021.100014
Nelson, D.W., Sommers L.E., 1996. Total carbon, organic carbon, and organic matter. In: D.L. Sparks
A.L. Page,
P.A. Helmke,
R.H. Loeppert,
P. N. Soltanpour,
M. A. Tabatabai,
C. T. Johnston,
M. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 961–1010.
https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In: A.L. Page
A.L. Page,
P.A. Helmke,
R.H. Loeppert,
P. N. Soltanpour,
M. A. Tabatabai,
C. T. Johnston,
M. E. Sumner (eds.) Methods of Soil Analysis. Part 2. ASA and SSSA, Madison, WI. p. 403–430.
https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Panwar, B. S., Ahmed, K. S., Miltal, S. B., 2002. Phytoremediation of nickel- contaminated soils by Brassica species. Environment, Development and Sustainability. 4, 1-6.
https://doi.org/10.1023/A:1016337132370
Rhodes, J.D., 1996. Salinity: electrical conductivity and total dissolved solids. In: D.L. Sparks
A.L. Page,
P.A. Helmke,
R.H. Loeppert,
P. N. Soltanpour,
M. A. Tabatabai,
C. T. Johnston,
M. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 417-435.
https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Saffari, V.R., Saffari, M., 2020. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil, International Journal of Phytoremediation,
https://doi.org/10.1080/15226514.2020.1754758
Sekabira, K., Oryem-Origa, H., Basamba, T.A., Mutumba, G., Kakudidi, E., 2010. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. International Journal of Environmental Science and Technology. 7, 435–446.
https://doi.org/10.1007/BF03326153
Shahid, M., Austruy, A., Echevarria, G., Arshad, M., Sanaullah, M., Aslam, M., Nadeem, M., Nasim, W. Dumat, C., 2014. EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination 23, 389–416.
https://doi.org/10.1080/15320383.2014.831029
Tariq, S. R., Ashraf, A., 2016. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry. 9, 806-814.
https://doi.org/10.1016/j.arabjc.2013.09.024
Tashakori zadeh, M., Alizadeh, M., 2019. Effect of ethylene diamine tetra acetic acids on morphological characteristics and phytoremediation capacity of Indian mustard (
Brassica juncea L) in nickel contaminated soil. Human and Environment. 17, 15-24 [In Persian].
https://dorl.net/dor/20.1001.1.15625532.1398.17.3.2.4
Tipu, M.I., Ashraf, M.Y., Sarwar, N., Akhtar, M., Shaheen, M.R., Ali, S., Damalas, C.A., 2021. Growth and Physiology of Maize (
Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. Journal of Plant Growth Regulation 40, 774-786.
https://doi.org/10.1007/s00344-020-10132-1
Thomas, G.W., 1996. Soil pH and soil acidity. In: D.L. Sparks,
A.L. Page,
P.A. Helmke,
R.H. Loeppert,
P. N. Soltanpour,
M. A. Tabatabai,
C. T. Johnston,
M. E. Sumner (eds.) Methods of Soil Analysis. Part 3. SSSA and ASA, Madison, WI. p. 475-490.
https://doi.org/10.2134/agronmonogr9.2.2ed.c13
Tohidi, Sh., Gholamalizadeh, A., Asgharipour, M., Naghavi, H., 2019. The effect of EDTA and ammonium molybdate on increasing bioavailability efficiency and decreasing lead tension by corn. Environmental Stresses in Crop Science. [In Persian].
https://doi.org/10.22077/escs.2019.1421.1310
Turaut, C., Katie, P., Cutright, T. J., 2004. The effect of EDTA and cytric acid on phytoremediation of cd, Cr and Ni from soil using
Helianthus annuus. Environmental Pollution. 13, 147-154
https://doi.org/10.1016/j.envpol.2004.01.017
Valivand, M., Amooaghaie, R., 2021. Foliar spray with sodium hydrosulfide and calcium chloride advances dynamic of critical elements and efficiency of nitrogen metabolism in
Cucurbita pepo L. under nickel stress. Scientia Horticulturea (Amsterdam) 283,110052
https://doi.org/10.1016/j.scienta.2021.110052
Vischetti, C., Marini, E., Casucci, C., De Bernardi, A., 2022. Nickel in the environment: Bioremediation techniques for soils with low or moderate contamination in European Union. Environments 9, 133.
https://doi.org/10.3390/environments9100133
Zhang, X., Zhong, B., Shafi , M., Guo, J., Liu, C., Guo, H., Peng, D., Wang, Y., Liu, D., 2018. Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environmental Science and Pollution Research. 25, 18846-18852.
https://doi.org/10.1007/s11356-018-2040-0