Document Type : Original Article
Authors
1 Graduate student of plant breeding, University of Yasouj, Yasouj, Iran.
2 Associate Professor, Faculty of Agriculture, University of Yasouj, Yasouj, Iran.
3 Assistant Professor, Faculty of Agriculture, University of Yasouj, Yasouj, Iran.
Abstract
Introduction
Low temperature stress is one of the important abiotic limiting factors for plants growth, production and distribution. Low temperature also reducing plants biological activity and their economical yield. In spite farmers are regulated planting data of sugar beet to reduce plants damage from cold and frozen stresses in moderate and cold regions but, there are several reports which show root and sugar yield reducing due to cold stress especially at the early growth stages. This study aimed to investigate the effect of low temperatures on the morpo-physiological traits of sugar beet varieties at seedling stage, and to introduce cold tolerant genotypes and effective cold tolerance related characters of sugar beet plants.
Material and method
In order to study of cold tolerance of number of sugar beet cultivars, an experiment was conducted at Agriculture Faculty of University Yasouj in 2013-2014. Seedling of ten sugar beet cultivars {(Karaji, SBSI- 005, Shirin, Rastad, Zarghan, Persia (Iranian cultivars) and Anaconda, Dorothy, Merak, Antic (exotic cultivars)} at stage of 2 to 3 leaves (25 days after planting) exposed to four levels of temperature including: 0, 5, 10 and 25º C (as a control). The experiment for each temperature level was completely randomized design with three replications. In order to application of cold stress the pots were placed in a growth chamber at the above mentioned temperatures. Physiological and morphological traits of seedling plants including: shoot height, shoot and root dry weight, electrolyte leakage, proline content, SPAD number, total soluble sugars content and chlorophyll fluorescence were measured. Stress tolerance index (STI) calculated based on shoot and root dry matter. Combined analysis of variance was done and means of main (temperature and cultivar) and interaction effects were compared using LSD and LSmeans methods, respectively. Descriptive statistics, genetic and phenotypic coefficients of variation and broad sense heritability were calculated. Stress intensity for all the above mentioned traits was calculated and the most affected traits by cold stress determined based on its value. Data were subjected to factor analysis using principal component method and the most important factors were interpreted. Four factor scores were calculated and cultivar classification was done using three-dimensional scatter plot based on scores of the first three factors.
Results and discussion
Results of combined analysis showed that the effects of temperature, cultivar and their interaction were significant for the all measured traits. There was high diversity among the studied sugar beet cultivars for cold stress tolerance. Based on the results, cultivars showed different responses to temperature levels. The means of shoot (68%) and root (77%) dry matter reduced in stress condition (0˚C) than control condition (25˚C) but, the means of electrolyte leakage, proline content, total soluble sugars content increased 25, 90.5 and 71% respectively, in cold stress condition (0˚C) than control condition (25˚C). The highest genotypic correlation was observed between shoot height and total soluble sugars (-0.67) in non-stress (25˚C) and between root fresh weight and shoot dry weight (-0.43) in cold stress (0˚C) conditions. Leaf proline content had the highest (0.9) stress intensity indicating that it was most affected by cold stress. Shoot height had the highest (75.09%) broad sense heritability so; this trait can be transmitted to next generation. Factor analysis identified 4 factors in the cold stress (0˚C) condition that justified 71.7 percent of total variation. The first three factors were related to cold stress tolerance. Genotypes grouping using three-dimensional plot based on the first three factor scores, introduced Merak and Antic cultivars as cold tolerant, Drothy and Anaconda cultivars as semi-cold tolerant and other cultivars as cold sensitive.
Conclusion
In general, results of this investigation showed that there is enough genetic diversity of cold tolerance in sugar beet cultivars at seedling growing stage. In this study proline content, Fv/Fm ratio and root dry matter played key role in genotypes grouping based on their response to cold stress. The tolerant cultivars had high amounts of these traits than other cultivars. The results of this investigation can be used in sugar beet breeding programs to improve cold tolerance at seedling growth stage.
Keywords