Akhzari, D., Pessarakli, M., Mahdavi, S., Ariapour, A., 2022. Impact of drought, salinity, and heavy metal stress on growth, nutrient uptake, and physiological traits of vetiver grass (
Chrysopogon zizanioides L.). Communications in Soil Science and Plant Analysis. 53, 1841-1847.
https://doi.org/10.1080/00103624.2022.2063327
Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., Badot, P.M., 2004. Effect of copper on growth in cucumber plants (
Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science. 166, 1213-1218.
https://doi.org/10.1016/j.plantsci.2003.12.032
Alfadul, S.M., Al-Fredan, M.A., 2013. Effects of Cd, Cu, Pb, and Zn combinations on phragmites australis metabolism. Metal accumulation and distribution. Arabian Journal for Science and Engineering. 38, 11-19.
https://doi.org/10.1007/s13369-012-0393-0
Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Singh, S.N., Singh, S.P., 2003. Phytoremediation of lead, nickel, and copper by
Salix acmophylla Boiss. Role of antioxidant enzymes and antioxidant substances. Bulletin of Environmental Contamination and Toxicology. 70, 0462-0469.
https://doi.org/10.1007/s00128-003-0009-1
Alloway, B.J., 2010. Heavy Metals in Soil (Third edition). John Wiley and Sons. New Yurk. USA.
Baek, S.A., Han, T., Ahn, S.K., Kang, H., Cho, M. R., Lee, S. C., Im, K.H., 2012. Effects of heavy metals on plant growths and pigment contents in
Arabidopsis thaliana. Plant Pathology. 28, 446-452.
https://doi.org/10.5423/PPJ.NT.01.2012.0006
Bates, L.S., Waldren, R.A., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207.
https://doi.org/10.1007/BF00018060
Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., Morshedloo, M.R., 2019. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of
Thymus vulgaris L. and
Thymus daenensis Celak. Industrial Crops and Products. 135, 311-320.
https://doi.org/10.1016/j.indcrop.2019.04.055
Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J.F., Margaritis, I., 2016. Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology. 35, 107-115.
https://doi.org/10.1016/j.jtemb.2016.02.006
Cetinkaya, H., Seckin dinler, B., Tasci, E., 2014. Investigation of comparative regulation on antioxidant enzyme system under copper treatment and drought stress in maize (
Zea mays L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 42, 363-371.
https://doi.org/10.15835/nbha.42.2.9632
Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C., 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food and Drug Analysis. 10, 178-182.
https://doi.org/10.38212/2224-6614.2748
Chen, J., Shafi, M., Li, S., Wang, Y., Wu, J., Ye, Z., Peng, D., Yan, W., Liu, D., 2015. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (
Phyllostachys pubescens). Scientific Reports. 5, 13554.
https://doi.org/10.1038/srep13554
Chen, Z., Ma, Y., Yang, R., GU, Z., Wang, P., 2019. Effects of exogenous Ca
+2 on phenolic accumulation and physiological changes in germinated wheat (
Triticum aestivum L.) under UV-B radiation. Food Chemistry. 288, 368-376.
https://doi.org/10.1016/j.foodchem.2019.02.131
Chrysargyris, A., Papakyriakou, E., Petropoulos, S.A., Tzortzakis, N., 2019. The combined and single effect of salinity and copper stress on growth and quality of
Mentha spicata plants. Hazardous Materials. 368, 584-593.
https://doi.org/10.1016/j.jhazmat.2019.01.058
Chung, I.M., Rajakumar, G., Subramanian, U., Venkidasamy, B., Thiruvengadam, M., 2019. Impact of copper oxide nanoparticles on enhancement of bioactive compounds using cell suspension cultures of
Gymnema sylvestre (Retz.) R. Br. Applied Sciences. 9, 2165.
https://doi.org/10.3390/app9102165
Dowidar, S.M., Khalaf, B.M., Abo-Hamad, S.A., Mohsen, A.A., 2013. Bioremediation of copper stressed Trigonella foenum graecum. Journal of Stress Physiology and Biochemistry. 9, 5-24.
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28, 350-356.
https://doi.org/10.1021/ac60111a017
Fidalgo, F., Azenha, M., Silva, A.F., de Sousa, A., Santiago, A., Ferraz, P., Teixeira, J., 2013. Copper‐induced stress in
Solanum nigrum L. and antioxidant defense system responses. Food and Energy Security. 2, 70-80.
https://doi.org/10.1002/fes3.20
Giannakoula, A., Therios, I., Chatzissavvidis, C., 2021. Effect of lead and copper on photosynthetic apparatus in citrus (
Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants. 10(1), 155.
https://doi.org/10.3390/plants10010155
Hasanuzzaman, M., Nahar, K., Rahman, A., Mahmud, J.A., Hossain, S., Alam, K., Oku, H., Fujita, M., 2017. Actions of biological trace elements in plant abiotic stress tolerance. Essential Plant Nutrients: Uptake, Use Efficiency, and Management. 213-274.
https://doi.org/10.1007/978-3-319-58841-4_10
Hassan, T.U., Bano, A., Naz, I., 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation. 19, 522-529.
https://doi.org/10.1080/15226514.2016.1267696
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125, 189-198.
https://doi.org/10.1016/0003-9861(68)90654-1
Khatun, S., Ali, M.B., Hahn, E.J., Paek, K.Y., 2008. Copper toxicity in
Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany. 64, 279-285.
https://doi.org/10.1016/j.envexpbot.2008.02.004
Khalid, Kh.A., 2006. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). International Agrophysics. 20, 289-296.
Ku, M.H., Tan, C.W., Su, Y.S., Chiu, C.Y., Chen, C.T., Jan, F.J., 2012. The effect of water deficit and excess copper on proline metabolism in
Nicotiana benthamiana. Biologia Plantarum. 56, 337-343.
https://doi.org/10.1007/s10535-011-0098-3
Muhammad, A., Shafaqat, A., Muhammad, R., Muhammad, I., Farhat, A., Mujahid, F., Saima, A. B., 2015. The effect of excess copper on growth and physiology of important food crops: A review. Journal of Environment Science and Pollution Research. 22, 8148-8162.
https://doi.org/10.1007/s11356-015-4496-5
Orhan, I. E., Ozturk, N., Sener, B., 2015. Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species. Asian Pacific Journal of Tropical Medicine. 8, 283-286.
https://doi.org/10.1016/S1995-7645(14)60331-X
Pande, P., Anwar, M., Chand, S., Yadav, V.K., Patra, D.D., 2007. Optimal level of iron and zinc in relation to its influence on herb yield and production of essential oil in menthol mint. Communications in Soil Science and Plant Analysis. 38, 561-578.
https://doi.org/10.1080/00103620701215627
Petridis, A., Therios, I., Samouris, G., Koundouras, S., Giannakoula, A., 2012. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive
Olea europaea (L.) cultivars. Plant Physiology and Biochemistry. 60, 1-11.
https://doi.org/10.1016/j.plaphy.2012.07.014
Posmyk, M.M., Kontek, R., Janas, K.M., 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety. 72, 596-602.
https://doi.org/10.1016/j.ecoenv.2008.04.024
Salducci, M.D., Folzer, H., Issartel, J., Rabier, J., Masotti, V., Prudent, P., Affre, L., Hardion, L., Tatoni, T., Laffont-Schwob, I., 2019. How can a rare protected plant cope with the metal and metalloid soil pollution resulting from past industrial activities? Phytometabolites, antioxidant activities and root symbiosis involved in the metal tolerance of Astragalus tragacantha. Chemosphere. 217, 887-896.
Sharma, A., Thakur, S., Kumar, V., Kanwar, M.K., Kesavan, A.K., Thukral, A.K., Bhardwaj, R., Alam, P., Ahmad, P., 2016. Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in
Brassica juncea L. through the modulation of stress markers. Frontiers in Plant Science. 7, 1569.
https://doi.org/10.3389/fpls.2016.01569
Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M., Zheng, B., 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under Abiotic Stress. Molecules. 24, 2452.
https://doi.org/10.3390/molecules24132452
Singh, O.S., Pant, N.C., Laishram, L., Tewari, M., Dhoundiyal, R., Joshi, K., Pandey, C.S., 2018. Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). Pharmacognozy and Phytochemistry. 7, 3433-3439.
Singleton, V.L., Orthofer, R., Lamuela-Raventós, R. S., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin ciocalteau reagent. Methods in Enzymology. 299, 152-178.
https://doi.org/10.1016/S0076-6879(99)99017-1
Stavreva Veselinovska, S., Zivanovic, J., Gokik, M., 2010. Changes of some biochemical and physiological parameters in Capsicum annuum L. as a consequence of increased concentrations of copper and zinc. Ecologia Balkanika. 2, 7-13.
Talukder, K.H., Ahmed, A.U., Islam, M. S., Asaduzzaman, M., Hossain, M.D., 2011. Incubation studies on exchangeable Zn for varying levels of added Zn under aerobic and anaerobic conditions in grey terrace soils, non-calcareosus floodplain soils and calcareosus floodplain soils. Science Foundation. 9, 9-14.
Tashakorizadeh, M., Vahabi, M.R., Golkar, P., Mahdavian, K., 2022. The singular and combined effects of drought and copper stresses on the morphological traits, photosynthetic pigments, essential oils yield and copper concentration of
Fumaria parviflora Lam. Industrial Crops and Products. 177, 114517.
https://doi.org/10.1016/j.indcrop.2021.114517
Wagner, G.J., 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology. 64, 88-93.
https://doi.org/10.1104/pp.64.1.88
Wang, L., Shan, T., Xie, B., Ling, C., Shao, S., Jin, P., Zheng, Y., 2019. Glycine betaine reduces chilling injury in peach fruit by en-hancing phenolic and sugar metabolisms. Food Chemistry. 272, 530-538.
https://doi.org/10.1016/j.foodchem.2018.08.085
Waraich, E. A., Rashid, A., Ashraf, M. Y., 2011. Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science. 5, 764-777.
Yadav, S., 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany. 76, 167-179.
https://doi.org/10.1016/j.sajb.2009.10.007
Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang, Q., 2018. Response of plant secondary metabolites to environmental factors. Molecules. 23, E762.
https://doi.org/10.3390/molecules23040762
Zhao, H., Tang, J., Zheng, W.J., 2016. Growth and physiological characteristics of Kandelia obovata seedlings under Cu2+ stress. Marine Sciences. 40, 65-72.
Zhou, J., Cheng, K., Zheng, J., Liu, Z., Shen, W., Fan, H., Jin, Z., 2019. Physiological and biochemical characteristics of Cinnamomum camphora in response to Cu- and Cd-contaminated soil. Journal of Water. Air and Soil Pollution. 230, 1-11.
https://doi.org/10.1007/s11270-018-4048-y