Document Type : Original Article
Authors
1 National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
2 nal Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
3 al and National Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Mashahd, Iran
4 ral and National Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
5 Agricultural and National Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Bushehr, Iran
Abstract
Introduction
Quinoa is a dicotyledonous plant from the Amaranthaceae family. Due to the high nutritional value, several breeding programs have been started on quinoa in different parts of the world. The goals of the breeding programs are to increase yield, reduce sensitivity to day length, increase seed size, reduce seed saponin content, and resistance to powdery mildew and seed color. The purpose of this research is to select high-yielding and adapted quinoa lines using different parametric and non-parametric methods.
Materials and methods
The advance quinoa line NSRCQ8 (B), NSRCQ7 (C), Sadoq (D), NSRCQ9 (E) with the Titicaca as control (T) in five regions, Yazd (Sadoq Salinity Research Farm, National Salinity Research Center), Sabzevar (Sabzevar Research Station), Shiraz (Khorameh), Bushehr (Ahram) and Iranshahr (Bampur) were evaluated in the form of randomized complete block design during two years 2019-2019. Planting date in Sabzevar was August 15 with irrigation water salinity of 2.8 and soil saturated extract salinity of 4.5 dS m-1, Yazd was 23th of Augest with irrigation water salinity of 12 and soil saturated extract salinity of 16.4 dS m-1, Shiraz on August 20 and in the second year, August 25 with irrigation water salinity of 11.2 and soil saturated extract salinity of 8.5 dS m-1 and Iranshahr on December 15 with irrigation water salinity of 2.8 and soil saturated extract salinity of 9 dS m-1 and Bushehr 22nd of November and in the second year on the first day of January with the irrigation water salinity of 6 and the salinity of the saturated soil extract of 10 dS m-1 and the planting date of the first year of Gorgan was the first of March without the need for irrigation. Yield and weight of 1000 seeds, saponin content and size of seeds were measured. The saponin content was determined using the method of Koziol, 1991. Bartlett's test was performed to check the uniformity of variance of environments and then statistical analysis was performed with SAS software. For the purpose of statistical analysis, line was defined as a fixed factor and year and place were defined as random factors, and the F test was performed according to the mathematical expectation of mean square of variation sources. Considering the significance of the interaction effect of genotype in year and place, stability analysis was done using different parametric and non-parametric methods with Stabilitysoft software.
Results and discussion
The results of combined analysis showed that the interaction effect of place and year on grain yield and foam height was significant. The interaction effect of line and place in year on measured traits was significant. The interaction effect of year and location on grain yield and foam height was significant. The results of simple mean comparison showed that the highest grain yield belonged to line D. The thousand kernel weight of line D was 2.6 g on average and 40% of the seeds were placed in the large class. The lowest loss percentage related to D line was 9%. Stability analysis with GGEbiplot method showed that line D is located at the top of the polygon and showed a high private adaptability with all environments except Bushehr in the first year. According to Wricke (1962) (Wᵢ²) line D was ranked 1. According to Finlay and Wilkinson's index (bᵢ), number less than one is the least sensitive to environmental changes, and line D had the lowest (0.9). Eberhart and Russell index (s²dᵢ) showed that line D was ranked 1. Line D is ranked 1 based on Shukla's index (σ²ᵢ). Total rank stability statistic (KR) as another measure to determine the stability of genotypes was presented by Kang. Based on this, the genotype with the lowest value is selected as the most stable. The lowest amount was observed in line D (2) and the highest amount was observed in line B (6). Based on the average of the total ranks, line D (1.44±1.09) had the most stability and line B had the least stability based on parametric and non-parametric indicators of stability. Based on the results of GGEbiplot method and non-parametric and parametric methods, line D had the highest performance and stability.
Conclusion
Evaluating parametric and non-parametric methods and GGEbiplot method showed similar results and led to the selection of D line. In addition to stability, this line had a yield of 800 kg ha-1 higher than Titicaca variety. The amount of seed saponin was half of that in Titicaca variety. Due to the stability and higher performance of this line, as well as the higher tolerance to salinity, this line was introduced and named as Sadoq variety. Also, in addition to the yield, thousand kernel weight and the amount of saponin were also affected by the environment.
Acknowledgments
This project has been carried out with the financial support of the Agricultural Research, Education and Promotion Organization. We appreciate all the provincial colleagues.
Keywords
Main Subjects