نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه باغبانی، دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد

2 استادیار گروه باغبانی، دانشگاه فردوسی مشهد، مشهد

3 استادیار گروه اگروتکنولوژی، دانشگاه فردوسی مشهد، مشهد

چکیده

به‌منظور بررسی تحمل به سرما در برخی ارقام سیب‌‌زمینی، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار انجام شد. تیمارهای دمایی شامل (4، 2، 0، 2-، 4- درجه سانتی گراد) و ارقام سیب‌‌‌زمینی (اگریا، فونتانه، آریندا و سانته) بودند. نتایج حاصل نشان داد در رقم سانته بقا به‌‌طور معنی‌‌داری با افت دما کاهش پیدا کرد. بقا در دمای  ۴- درجه سانتی گراد در رقم فونتانه 55 درصد بیشتر از رقم سانته بود. محتوای فنل در رقم سانته در دمای 2- درجه سانتی گراد، ۸۱ درصد بیشتر از رقم فونتانه بود. در رقم سانته محتوای پرولین با کاهش دما از 4 به صفر درجه سانتی‌گراد چهار برابر افزایش پیدا کرد. در رقم فونتانه کاهش دما از 4 به 2- درجه سانتی گراد محتوای پرولین افزایش و با کاهش بیشتر دما کاهش یافت. محتوای کربوهیدرات‌های محلول در رقم سانته، آریندا و اگریا با کاهش دما افزایش و در رقم فونتانه کاهش یافت. رقم سانته بیشترین و رقم فونتانه کمترین روند افزایشی مالون‌دی‌آلدئید را با کاهش دما از 4 به 4- درجه سانتی گراد داشتند. فعالیت آنزیم کاتالاز با کاهش دما تا دمای صفر درجه سانتی‌گراد در رقم سانته 2.9 برابر افزایش پیدا کرد. در رقم فونتانه بیشترین فعالیت آنزیم CAT در دمای  2 درجه سانتی گراد بود. فعالیت آنزیم پراکسیداز در رقم سانته با کاهش دما از صفر به 2- درجه سانتی گراد حدود 9.3 برابر افزایش یافت. در رقم فونتانه با کاهش دما تا 2 درجه سانتی گراد فعالیت آنزیم سوپر‌اکسید‌ دیسموتاز کاهش یافت و با کاهش دما به صفر درجه سانتی‌گراد، 80 درصد افزایش یافت. ارتفاع بوته بعد از اعمال تنش سرما در رقم سانته و اگریا نسبت به شاهد کمتر بود ولی در رقم فونتانه با کاهش دما ارتفاع بوته نسبت به شاهد بیشتر بود. در دمای 4- درجه سانتی گراد بیشترین وزن خشک اندام هوایی در رقم فونتانه و کمترین وزن خشک اندام هوایی در رقم سانته مشاهده شد. به‌طور‌کلی رقم فونتانه که دارای سازوکار دفاعی بهتر و کارآمدتری نسبت به سایر ارقام بود تحمل‌ به سرمای بهتری نشان داد.

کلیدواژه‌ها

موضوعات

 
Adhikari, L., Baral, R., Paudel, D., Min, D., Makaju, S.O., Poudel, H.P., Acharya, J.P., Missaoui, A.M., 2022. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress, 4, 100081. https://doi.org/10.1016/j.stress.2022.100081
Alisoltani, A., Alizadeh, H., Mahfoozi, S., Khayalparast, F., 2012. The effect of short and long terms cold acclimation on biochemical characteristics of spring and winter wheat (Triricum aestivum L.) cultivars. Iranian Journal of Crop Sciences, 14, 108-120. [I In Persian with English Summary].
Anderson, M. D., Prasad, T.K., Stewart, C. R., 1995. Changes in isoenzyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109, 1247-1257. https://doi.org/10.1104/pp.109.4.1247
Barzan, Z., Dehdari, M., Amiri Fahliani, R., 2018. Evaluation of cold tolerance in rapeseed (Brassica napus L.) genotypes at seedling stage and its association with microsatellite markers. Journal of Crop Production and Processing, 8, 33-45. [In Persian with English Summary]. https//doi.org/10.29252/jcpp.8.2.33
Bates L., Waldren R.P., Teare I.D., Rapid determination of free proline for water stress studies. Plant Soil, 1973; 39, 205-207. https://doi.org/10.1007/BF00018060
Bustamante, C. A., Monti, L. L., Gabilondo, J., Scossa, F., Valentini, G., Budde, C. O., 2016. Differential metabolic rearrangements after cold storage are correlated with chilling injury resistance of peach fruits. Front. Plant Science. 7:1478. https://doi.org/10.3389/fpls.2016.01478
Caverzan, A., Passaia, G., Rosa, SB., Ribeiro, CW., Lazzarotto, F., Margis-Pinheiro, M., 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology. 35, 1011-1019. https://doi.org/10.1590/S1415-47572012000600016
Chang, D.C., Sohn, H.B., Cho, J.H., Im, J.S., Jin, Y.I., Do, G.R., Kim, S.J., Cho, H.M., Lee, Y.B., 2014. Freezing and frost damage of potato plants: a case study on growth recovery, yield response, and quality changes. Potato Research, 57, 99-110. https://doi.org/10.1007/s11540-014-9253-5
Che, Y., Zhang, N., Zhu, X., Li, S., Wang, S., Si, H., 2020. Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature. Scientia Horticulturae, 261, 108949. https://doi.org/10.1016/j.scienta.2019.108949
Chen, T.H., Gusta, L., Fowler, D.B., 1983. Freezing injury and root development in winter cereals. Plant Physiology, 73: 773-777. https://doi.org/10.1104/pp.73.3.773
Cyril, J., Duncan, R.R., and Baird, W.V., 1998. Changes in membrane fatty acids in cold-acclimated turf grass. Journal of Horticultural Science, 33: 453-465.   https//doi.org/10.21273/HORTSCI.33.3.453C
de Freitas, G.M., Thomas, J., Liyanage, R., Lay, J.O., Basu, S., Ramegowda, V., do Amaral, M.N., Benitez, L.C., Braga, E.J., Pereira, A., 2019. Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS ONE. 14, e0218019. https://doi.org/10.1371/journal.pone.0218019
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., 1956. Calorimetric method for determination of sugars and related substances. Analytical Chemistry Acta, 28, 350-356. https://doi.org/10.1021/ac60111a017
Fridovich, I., 1986. Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics, 247, 1-11. https://doi.org/10.1016/0003-9861(86)90526-6
Fry, J.D., Lang, N.S., Clifton, R.G.P., Maier, F.P., 1993. Freezing tolerance and carbohydrate content of low temperature-acclimated and non-acclimated centipede grass. Crop Science, 33, 1051-1055. https://doi.org/10.2135/cropsci1993.0011183X003300050035x
 
Fu, J., Miao, Y., Shao, L., Hu, T., Yang, P., 2016. De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics 17, 870. https://doi.org/10.1186/s12864-016-3222-0
Fürtauer, L., Weiszmann, J., Weckwerth, W., Nägele, T., 2019. Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Sciences, 20, 5411. https://doi.org/10.3390/ijms20215411
Fuyi, M., Mengyun, L., 1995. Potato Cultivation Physiology. Beijing: China Agriculture Press, 65–80.
Giannopolitis, C. N., Ries, S. K., 1977. Superoxide dismutase. I. occurrence in higher plants. Plant Physiology, 59, 309-314. https://doi.org/10.1104/pp.59.2.309
Gültekin, R., Ertek, A., 2018. Effects of deficit irrigation on the potato tuber development and quality. International Journal of Agriculture Environment and Food Sciences, 2, 93-98. https://doi.org/10.31015/jaefs.18015
Gusta, L. V., Wisniewski, M., 2013. Understanding plant cold hardiness: an opinion. Physiologia Plantarum. 147, 4–14. https://doi.org/10.1111/j.1399-3054.2012.01611.x
Hijmans R.J., Spooner D.M., 2001, Geographic distribution of wild potato species. American Journal of Botany, 88, 2101–2112. https://doi.org/10.2307/3558435
Huang, X., Shi, H., Hu, Z., Liu, A., Amombo, E., Chen, L., Fu, J., 2017. ABA is involved in regulation of cold stress response in bermudagrass. Frontiers in Plant Science, 8, 1613. https://doi.org/10.3389/fpls.2017.01613.
Li F., Liu J., Duan S.G., Jin L.P. 2008. Physic-biochemical changes related to the freezing tolerance during cold acclimation in potato seedling. Chinese Potato Journal, 22, 257-260. https://doi.org/10.3969/j.issn.1672-3635.2008.05.001.
Lin, Q., Xie, Y., Liu, W., Zhang, J., Cheng, S., Xie, X., Guan, W., Wang, Z., 2017. UV-C treatment on physiological response of potato (Solanum tuberosum L.) during low temperature storage. Journal of Food Science and Technology, 54, 55-61. https://doi.org/10.1007/s13197-016-2433-3
Liu, H., Ouyang, B., Zhang, J., Wang, T., Li, H., 2012. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One, 7, 1-16.
Luo, Z., Wu, X., Xie, Y., Chen, C., 2012. Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment. Food Chemistry, 131, 456-461. https://doi.org/10.1016/j.foodchem.2011.09.007
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F., 2004. Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490– 498.
Moieni-Korbekandi, Z., Karimzadeh, G., Sharifi, M., 2014. Cold-induced changes of proline, malondialdehyde and chlorophyll in spring canola cultivars. Journal of Plant Physiology and Breeding, 4, 1-11.
Nezami, A., Ahmadi Lahijani, M.J., Shojaei Noferest, K., Rezaei, J., Fazeli, F., 2016. Freezing tolerance of grass species under controlled conditions. Journal of Plant Production Research, 23, 89-106. [In Persian].
Nezami, A., Khaninejad, S., Bahrami, M. R., Zarif Ketab, H., 2018. Maximum efficiency of photosystem II as a freezing stress index in perennial ecotypes of rye (Secale Montanum). Iranian Journal of Field Crops Research, 16, 1-14. [In Persian with English Summary] https://doi.org/10.22067/gsc.v16i1.43975
Nezami, A., Khazaei, H.R., Azizi, H., Najibnia, S., 2009. Effects of acclimation on wheat (Triticum aestivum L.) cold tolerance under laboratory conditions. Journal of Crop Production, 2, 55-70. [In Persian with English Summary].
Nezami, A., Nabati, J., Borzooei, A., Kamandi, A., Masomi, A., and Salehi, M., 2010. Evaluation of freezing tolerance in barley (Hordeum vulgar L.) cultivars at seedling stage under controlled conditions. Environmental Stresses in Crop Sciences, 3, 9-22. [In Persian with English Summary]. https://doi.org/10.22077/escs.2010.79
Phukan, U.J., Jeena, G.S., Shukla, R.K., 2016. WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science, 7, 60. https://doi.org/10.3389/fpls.2016.00760
Prasad, T.K., Anderson, M.D., Martin, B.A., Stewart, C.R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6, 65–74. https://doi.org/10.1105/tpc.6.1.65
Rihan, H.Z., Al-Issawi, M., Fuller, M.P., 2017. Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions. 12, 143-157. https://doi.org/10.1080/17429145.2017.1308568
Siahmerghouie, A., Azizi, G., Nezami, A., Jahani-Kandari, M. 2011. Investigation of laboratory freeze tolerance of field grown fennel (Fueniculum vulgar) ecotypes. Journal of Horticultural Science, 25, 64-72. [In Persian with English Summary]. https://doi.org/10.22067/jhorts4.v1390i1.9758
Singh, R.P., Prasad, P.V., Sharma, A.K., Reddy, K.R., 2011. Impacts of high-temperature stress and potential opportunities for breeding. Wiley-Blackwell, Chichester, UK. p. 166– 185. https://doi.org/10.1002/9780470960929.ch13
Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
Soliman, M.H., Alayafi, A.A., El Kelish, A.A., Abu-Elsaoud, A.M., 2018. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Botanical Studies, 59, 1-17. https://doi.org/10.1186/s40529-018-0222-1
Srinivas, N.D., Rashmi, K.R., Raghavarao, K.S.M.S., 1999. Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochemistry, 35, 43-48. https://doi.org/10.1016/S0032-9592(99)00030-8
Stewart, R.R., Bewley, J.D., 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65, 245-248. https://doi.org/10.1104/pp.65.2.245
Van Harsselaar, J.K., Lorenz, J., Senning, M., Sonnewald, U., Sonnewald, S., 2017. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics, 18, 1-18. https://doi.org/10.1186/s12864-016-3381-z
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D., Van Camp, W., 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 16, 4806-4816. https://doi.org/10.1093/emboj/16.16.4806
Willick, I.R., Takahashi, D., Fowler, D.B., Uemura, M., Tanino, K.K., 2018. Tissue-specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns. Journal of Experimental Botany, 69, 1221-1234. https://doi.org/10.1093/jxb/erx450
Wu, Q., He, T., Liu, H., Luo, X., Yin, W., Chen, E., Li, F., 2019. Cell ultrastructure and physiological changes of potato during cold acclimation. Canadian Journal of Plant Science, 99, 873-884. doi: 10.1139/cjps-2019-0092.
Yadav, S.K., 2010. Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 30, 515-527. https://doi.org/10.1051/agro/2009050.
Yamaguchi-Shinozaki, K., Shinozaki, K., 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review Plant Physiology and Plant Molecular Biology, 57, 781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444