نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری اصلاح نباتات، استادیار گروه کشاورزی و منابع طبیعی، مرکز آموزش عالی اقلید، اقلید

2 دکتری اصلاح نباتات، استادیار بخش تحقیقات نهال و بذر، مرکز تحقیقات کشاورزی و منابع طبیعی فارس، شیراز

چکیده

شوری خاک و آب سبب کاهش چشمگیر عملکرد گیاهان زراعی و به خطر افتادن امنیت غذایی انسان در سراسر جهان شده است. درک مبانی مولکولی چگونگی دریافت و پاسخ به شوری برای توسعه گیاهان متحمل از طریق دست­ورزی­ های ژنتیکی ضروری است. در این پژوهش، دو کتابخانه 5′ Expressed Sequenced Tags (ESTs) مربوط به گیاه شلغم ­علوفه­ ای (Brassica rapa L.) در شرایط بدون تنش و تنش شوری مورد تجزیه ­های بیوانفورماتیکی و آماری قرار گرفت و طی آن جهت­ گیری کارکردی ژنوم و شبکه ژنی پاسخ به شوری تعیین گردید. بر اساس تجزیه توپولوژی شبکه ژنی، یک ژن به‌عنوان ژن مهم (Hub gene) شناسایی شد. در ادامه و در یک آزمایش گلخانه­ ای، با استفاده از یک ژنوتیپ متحمل و یک ژنوتیپ حساس شلغم علوفه ­ای، نمایه بیان ژن مهم شناسایی شده و تغییرات برخی صفات مرتبط با سیستم آنتی­ اکسیدانی گیاه، 3 و 12 ساعت پس از تیمار شوری 200 میلی مولار ارزیابی گردید. درنهایت، ارتباط بین تغییرات مشاهده‌شده در بیان ژن، صفات ارزیابی‌شده و تحمل شوری مشخص شد. نتایج نشان داد که فعالیت ژنوم شلغم علوفه ­ای به شکل معنی­ داری به سمت پاسخ به القائات و تنش­ها تغییر کرده است. در بین 344 ژن با بیان افتراقی، ژن کد کننده­ عامل رونویسی ZAT6 به‌عنوان ژن مهم شبکه ژنی پاسخ به شوری تعیین شد. نمایه بیان این ژن، میزان آنتوسیانین، فعالیت آنزیم­های آنتی‌اکسیدان و محتوای مالون ­دی­ آلدهید به شکل معنی­ داری بین دو ژنوتیپ تفاوت داشت. ژنوتیپ متحمل به شکل معنی­ داری سطوح بالاتری از بیان ژن ZAT6، میزان بیشتر آنتوسیانین، فعالیت بیشتر آنزیم­ های آنتی ­اکسیدانی و محتوای کمتر مالون­ دی ­آلدهید را نشان داد. همچنین ارتباط معنی­ داری بین سطوح بیان ژن، صفات ارزیابی‌شده و تحمل شوری وجود دارد. در یک نتیجه ­گیری کلی، به نظر می­رسد ژن ZAT6 در تنظیم توان سیستم آنتی ­اکسیدانی شلغم علوفه ­ای و به دنبال آن تحمل شوری نقش مهمی بر عهده دارد.

کلیدواژه‌ها

موضوعات

 
Altaf, M.A., Shahid, R., Ren, M.X., Mora‐Poblete, F., Arnao, M.B., Naz, S., Anwar, M., Altaf, M.M., Shahid, S., Shakoor, A.J., 2021. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. Physiologia Plantarum 172, 820-846.
Ambrosino, L., Colantuono, C., Diretto, G., Fiore, A., Chiusano, M.L., 2020. Bioinformatics resources for plant abiotic stress responses: state of the art and opportunities in the fast evolving-omics era. Plants 9, 591.
Amiri, M., Eslamian, S.S., 2010. Investigation of climate change in Iran. Journal of Environmental Science and Technology. 3, 208-216.
Amirian Mojarad, M., Hassandokht, M.R., Abdossi, V., Tabatabaei, S.A., Larijani, K., 2018. Effects of salt stress on some morphological and physiological traits of Iranian turnip accessions (Brassica rapa L.). Iranian Journal of Horticultural Science 49, 579-587. [In Persian with English summary].
Anwar, A., Kim, J.K., 2020. Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences. 21, 2695.
Arnao, M.B., Hernández-Ruiz, J.J.C.p., science, p., 2021. Melatonin against environmental plant stressors: a review. Current Protein & Peptide Science. 22, 413 - 429.
Ashraf, M., Akram, N.A.J.B.a., 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances. 27, 744-752.
Audic, S., Claverie, J.-M., 1997. The significance of digital gene expression profiles. Genome Research. 7, 986-995.
Beyer Jr, W.F., Fridovich, I., 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry. 161, 559-566.
Castelán-Muñoz, N., Herrera, J., Cajero-Sánchez, W., Arrizubieta, M., Trejo, C., García-Ponce, B., Sánchez, M.d.l.P., Álvarez-Buylla, E.R., Garay-Arroyo, A.J., 2019. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Frontiers in Plant Science. 10, 853.
Chance, B., Maehly, A.C., 1955. Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8
Dresselhaus, T., Hückelhoven, R., 2018. Biotic and abiotic stress responses in crop plants. Agronomy. 8(11), 267; https://doi.org/10.3390/agronomy8110267
Fan, Z.-Q., Tan, X.-L., Chen, J.-W., Liu, Z.-L., Kuang, J.-F, Lu, W.-J., Shan, W., Chen, J.-Y., 2018. BrNAC055, a novel transcriptional activator, regulates leaf senescence in Chinese flowering cabbage by modulating reactive oxygen species production and chlorophyll degradation. Journal of Agricultural and Food Chemistry 66, 9399-9408.
Ferguson, J.N.J., 2019. Climate change and abiotic stress mechanisms in plants. Emerging Topics in Life Sciences 3, 165-181.
Foyer, C.H., 2018. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany 154, 134-142.
Francini, A., Sebastiani, L., 2019. Abiotic stress effects on performance of horticultural crops. Horticulturae. 5, 67.
Ghorbel, M., Saibi, W., Brini, F., 2020. Abiotic Stress Signaling in Brassicaceae Plants. Journal of Soil and Plant Biology. 1, 138-150.
Haak, D.C., Fukao, T., Grene, R., Hua, Z., Ivanov, R., Perrella, G., Li, S.J., 2017. Multilevel regulation of abiotic stress responses in plants. Frontiers inPlant Science. 8, 1564.
Han, G., Lu, C., Guo, J., Qiao, Z., Sui, N., Qiu, N., Wang, B.J., 2020. C2H2 zinc finger proteins: master regulators of abiotic stress responses in plants. Frontiers in Plant Science 11, 115.
Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., Fotopoulos, V.J., 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681.
Knörzer, O.C., Burner, J., Boger, P., 1996. Alterations in the antioxidative system of suspension‐cultured soybean cells (Glycine max) induced by oxidative stress. Physiologia Plantarum. 97, 388-396.
Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M.S., Grotewold, E.J., 2015. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signaling and Behavior. 10, e1027850.
Koyro, HW., Ahmad, P., Geissler, N., 2012. Abiotic stress responses in plants: An overview. In: Ahmad, P., Prasad, M. (eds.), Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_1
Krizek, D.T., Kramer, G.F., Upadhyaya, A., Mirecki, R.M., 1993. UV‐B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiologia Plantarum. 88, 350-358.
Li, J., Yang, Y., Sun, K., Chen, Y., Chen, X., Li, X.J.M., 2019. Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules and Cells. 24, 1826.
Li, N., Zhang, Z., Chen, Z., Cao, B., Xu, K., 2021a. Comparative transcriptome analysis of two contrasting Chinese cabbage (Brassica rapa L.) genotypes reveals that ion homeostasis is a crucial biological pathway involved in the rapid adaptive response to salt stress. Frontiers in Plant Science. 12, 1093.
Li, X., Ahammed, G.J., Zhang, X.-N., Zhang, L., Yan, P., Zhang, L.-P., Fu, J.-Y., Han, W.-Y.J., 2021b. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. Journal of Hazardous Materials .403, 123922.
Li, X., Lv, X., Wang, X., Wang, L., Zhang, M., Ren, M.J., 2018. Effects of abiotic stress on anthocyanin accumulation and grain weight in purple wheat. Crop and Pasture Science. 69, 1208-1214.
Liu, X.-M., Nguyen, X.C., Kim, K.E., Han, H.J., Yoo, J., Lee, K., Kim, M.C., Yun, D.-J., Chung, W.S.J., 2013. Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress. Biochemical and Biophysical Research Communications. 430, 1054-1059.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25, 402-408.
Mann, T., 1984. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye-binding. Annals of Biochemistry. 72, 248-254.
Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., Kanehisa, M., Endo, T., Goto, S., 2006. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Research. 34, W459-W462.
Mittal, N., Thakur, S., Verma, H., Kaur, A., 2018. Interactive effect of salinity and ascorbic acid on Brassica rapa L. plants. Global Journal of Bio-Science and BioTechnology. 7, 27-29.
Moghaddam, P., Koocheki, A., 2001. History of research on salt-affected lands of Iran: present status and future prospects–halophytic ecosystems. Prospects of Saline Agriculture in the Arabian Peninsula: Proceedings of the International Seminar on Prospects of Saline Agriculture in the GCC Countries, pp. 18-20.
Morales, M., Munné-Bosch, S.J.P.p., 2019. Malondialdehyde: facts and artifacts. Plant Physiology. 180, 1246-1250.
Naseri, A., Sharghi, M., Hasheminejad, S.M.H., Chemistry, 2021. Enhancing gene regulatory networks inference through hub-based data integration. Computational Biology Chemistry, 95, 107589.
Nawaz, M.A., Jiao, Y., Chen, C., Shireen, F., Zheng, Z., Imtiaz, M., Bie, Z., Huang, Y.J., 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology. 220, 115-127.
Nikitin, A., Egorov, S., Daraselia, N., Mazo, I., 2003. Pathway studio—the analysis and navigation of molecular networks. Bioinformatics. 19, 2155-2157.
Noreen, Z., Ashraf, M., Akram, N.J., 2010. Salt‐induced regulation of some key antioxidant enzymes and physio‐biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). Journal of Agronomy and Crop Science. 196, 273-285.
Raman, K., Damaraju, N., Joshi, G.K., 2014. The organisational structure of protein networks: revisiting the centrality–lethality hypothesis. Systems and Synthetic Biology. 8, 73-81.
Romualdi, C., Bortoluzzi, S., d’Alessi, F., Danieli, G.A., 2003. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics. 12, 159-162.
Sahoo, J.P., Behera, L., Sharma, S.S., Praveena, J., Nayak, S.K., Samal, K.C.J.A.J.o.P.S., 2020. Omics Studies and Systems Biology Perspective towards Abiotic Stress Response in Plants. American Journal of Plant Sciences. 11, 2172.
Shafi, A., Singh, A.K., Zahoor, I., 2021. Melatonin: Role in Abiotic Stress Resistance and Tolerance. In: Aftab, T., Hakeem, K.R. (eds.), Plant Growth Regulators. Springer, Cham. https://doi.org/10.1007/978-3-030-61153-8_12
Shamloo-Dashtpagerdi, R., Lindlöf, A., Niazi, A., Pirasteh-Anosheh, H.J., 2019. LOS2 gene plays a potential role in barley (Hordeum vulgare L.) salinity tolerance as a hub gene. Molecular Breeding. 39, 1-12.
Shamloo-Dashtpagerdi, R., Razi, H., Ebrahimie, E., Niazi, A., 2018. Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Molecular Biology Reports. 45, 1111-1124.
Shamloo-Dashtpagerdi, R., Razi, H., Ebrahimie, E., 2015. Mining expressed sequence tags of rapeseed (Brassica napus L.) to predict the drought responsive regulatory network. Physiology and Molecular Biology of Plants 21, 329-340.
Shamloo‐Dashtpagerdi, R., Lindlöf, A., Aliakbari, M., Pirasteh‐Anosheh, H.J., 2020. Plausible association between drought stress tolerance of barley (Hordeum vulgare L.) and programmed cell death via MC1 and TSN1 genes. Physiologia Plantarum 170, 46-59.
Sherman, B.T., Tan, Q., Collins, J.R., Alvord, W.G., Roayaei, J., Stephens, R., Baseler, M.W., Lane, H.C., Lempicki, R.A., 2007. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biology. 8, 1-16.
Shi, H., Liu, G., Wei, Y., Chan, Z.J.P.m.b., 2018a. The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis. Plant Molecular Biology ReporteR. 97, 165-176.
Shi, H., Zhang, S., Lin, D., Wei, Y., Yan, Y., Liu, G., Reiter, R.J., Chan, Z.J., 2018b. Zinc finger of Arabidopsis thaliana 6 is involved in melatonin‐mediated auxin signaling through interacting INDETERMINATE DOMAIN 15 and INDOLE‐3‐ACETIC ACID 17. Journal of Pineal Research. 65, e12494.
Tang, W., Luo, C.J.O.l.s., 2018. Overexpression of zinc finger transcription factor ZAT6 enhances salt tolerance. Open Life Sciences 13, 431-445.
Valentovic, P., Luxova, M., Kolarovic, L., Gasparikova, O., 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment. 52, 184.
Zaffagnini, M., Fermani, S., Marchand, C.H., Costa, A., Sparla, F., Rouhier, N., Geigenberger, P., Lemaire, S.D., Trost, P., 2019. Redox homeostasis in photosynthetic organisms: novel and established thiol-based molecular mechanisms. Antioxidants & Redox Signaling. 31, 155-210.
Zhang, H., Zhu, J., Gong, Z., Zhu, J.-K.J., 2021. Abiotic stress responses in plants. Nature Reviews Genetics, 23, 104–119