تاثیر آبیاری بارانی متعامد تحت شرایط کم‌آبی و شوری‌های متفاوت بر تولید گندم (دانه و کاه) جهت و برازش مناسب‌ترین تابع تولید بر آن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیئت‌علمی بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران.

2 استاد گروه مهندسی آب، دانشگاه فردوسی مشهد

چکیده

آب در مناطق خشک و نیمه-خشک بعضاً شور بوده و از کیفیت پائینی برخوردار است، بنابراین گیاهان ممکن است تحت تأثیر توأمان شوری و خشکی قرار گیرند. این پژوهش جهت بررسی واکنش عملکرد گندم و کاه تحت شرایط توأم دو عامل آب و شوری در آبیاری بارانی بر روی گندم رقم بک‌کراس روشن ۶۶۱۱، با استفاده از دو خط آبیاری بارانی عمود بر هم، در قطعه زمینی به ابعاد ۳۲´۳۲ متر در غرب شهرستان بیرجند در خاکی با بافت شنی لومی انجام شد. زمین آزمایش، محل تلاقی دو خط لاین سورس (تک شاخه ­ای) عمود بر هم بود که از آبپاش‌های یک خط، آب شیرین (EC = 1.5 dS/m) و از آبپاش خط دیگر آب‌شور (EC = 5.5 dS/m) پخش می‌شد.پنج نوع تابع تولید شامل خطی ساده، کاب داگلاس، درجه دوم، لیتی و دینار و متعالی بر اساس تحلیل تابع تولید آب_شوری و با استفاده از داده‌های مزرعه‌ای مورد ارزیابی قرار گرفتند. نتایج نشان داد که پیش‌بینی عملکرد گندم و کاه تحت تأثیر شرایط توأم خشکی و شوری با تابع کاب داگلاس از توابع دیگر بهتر است. نتایج مقایسه نسبت نرخ جایگزینی نشان داد که امکان جایگزینی دو عامل شوری و مقدار آب برای حصول به وزن دانه و کاه یکسان وجود دارد. همچنین نتایج حاصل از آن نشان داد که در عملکردهای پایین‌تر، اثر مقدار آب بر کاهش محصول بیش از اثر شوری است.

کلیدواژه‌ها


Agnihotri, A.K., Kumghare, P.S., Rao, K.V.G.K., Sharm, D.P., 1992. Econometric consideration for reuse of drainage in wheat production. Agricultural Water Management. 22, 249-270.

Aragues, S.R., Royo, A., Faci, J., 1992. Evaluation of triple line source sprinkler system for salinity crop production studies. Soil Science Society of America Journal. 56, 377-383.

Colmer, T.D., Flowers, T.J., Munns, R., 2006. Use of wild relative to improve salt tolerance in wheat. Experimental Botany. 57, 1059-1078.

Datta, K.K., Sharma, V.P., Sharm, D.P., 1998. Estimation of a production function for wgeat under saline conditions. Agricultural Water Management. 36, 85-94.

Dinar, R., Letey J,. Vaux, H.J.Jr., 1985. Optimal rates of saline and non- saline irrigation waters for crop production. Soil Science Society of America Journal. 50, 440-443.

Doorenbos, J., Kassam, A.H., 1979. Yield response to water. Irrigation and Drainage Paper 33. FAO, ROME.

Doorenbos, J., Pruitt, W.O., 1977. Guidelinws for prediction of field water use and crop yield. Pudoc. Wagenengen. 189p.

FAO. 2010. Extent and causes of salt-affected soils in participating countries. Available on URL: http://www.fao.org/ag/AGL/agll/spuch/topic4.htm.

FAO. 2013. http://www.fao.org

Faria, R.D., Olitta, A., 1987. Irrigation depth for wheat crops using a line source sprinkler system. Pesquisa-Agropecuaria-Brasileira. 22(9-10), 999-1008.

Frenkel, H., Mantell, A., Vinten, A., Meiri, A., 1990. Double line–source sprinkler system for determining the separate and interactive effects of water and salinity on forage corn. Irrigation Science. 11, 227-231.

Gupta, N.K., Gupta. S., 2005. Plant Physiology. Oxford and IBH Publishing Co. 256p.

Hang, A., Miller, D., 1983. Wheat development as affected by deficit, high frequency sprinkler irrigation. Agronomy Journal. 75(2), 234-239.

Hanks, R.J., Keller, J. Rasmussen, V.P., and Wilson, G.D., 1976. line source sprinkler for continuous variable irrigation- crop – production studies. Soil Science Society of America Journal. 40, 426-429.

Hexem, R.Q., Heady, E.O., 1978. Water production funection and irrigated agriculture. Iowa State University Press, Amesterdam.

Jensen, C.R., 1982. Effect of soil water osmotic potential on growth and water relationship of barely during soil water depletion. Irrigation Science. 3, 11-121.

Kachel, K., Roth, D., 1984. Results of trials over many years of the effect of sprinkler irrigation on winter wheat and spring barley yield on a shalliw clay-chernoxem soil. Archiv - fur - Acker- und - Pflanzenbau - und-Bodenkunde. 28, 1, 35-45.

Kiani, A.R., Mirlatifi, M., Homaee, M., Cheraghi, A.M., 2004. Effects of different regimes of irrigation and salinity on wheat in Gorgan region. Agricultural Science and Natural Resources. 11(1), 79-89 [In Persian with English Summary]

Komatsua, S., Shirasakab, N., Sakatab, K., 2013. ‘Omics’ techniques for identifying flooding– response mechanisms in soybean. Journal of Proteomics. 93, 169-178.

Lauer, D.A., 1983. Line–source sprinkler systems for experimentation with sprinkler-applied nitrogen fertilizers. Soil Science Society of America Journal. 47: 124-128.

Letey, J., Dinar, A., 1986. Simulated crop productions for several crops when irrigated with saline waters. Hilgardia. 54, 1-32.

Letey, J., Dinar, A., Knapp, K.C., 1985. Crop-water production model for saline irrigation waters. Soil Science Society American Journal. 49, 1005-1009.

Maas, E.V., 1986. Salt tolerance of plants. Application Agricultural Research. 1, 12-26.

Maas, E.V., 1990. Crop Salt Tolerance. ASAE. Monograph. 71. pp 262-304.

Maas, E.V., Hoffman, G.J., 1977. Crop Salt Tolerance: Current Sssessment. Irrigation and Drainage Divitsion, ASCE, 103(IR2), 115-134.

Meiri, A., Shalhevet, J., 1973. Pepper plant response to irrigation water quality and timing and leaching. Ecological Studies. Vol IV. Springer-Verlag. Berlin. Pp. 421-429.

Munns, R. James, R.A., 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat, Plant and Soil. 253, 201-218.

Parra, M.A., Romero, G.C., 1980. On thedependence of salt tolerance of beans on soil water matric potential. Plant and Soil. 56, 3-16.

Rao, G.D., 1991. Line source vs.Irrigated - Nonirrigatedtreatments for Evaluation of Genotype Drought Response. Agronomy Journal. 82 (4), 841-844.

Rivest, D., Lorente, M., Olivier, A., Messier, Ch., 2013. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Science of the Total Environment. 463-464, 51–60.

Russo, D., Bakker, D., 1986. Crop water production tunctions for sweet corn and cotton irrigated with saline waters. Soil Science Society of America Journal. 51, 1554-1562.

Sammis, T.W., Smeal, D., 1983. The Effects of Decreased Watering on Wheat and Barley Yields, WRRI Report. No.179 January 1983.72 p.

Schneider, A.D., Howell, T.A., 1999. LEPA and spray irrigation for Grain crops. Irrigation and Drainage Engineering. 125(4), 167-172.

Sepaskhah, A.R., Boersma, L., 1979. Shoot and root growth expwsed to several levels of matric potential and NACL induced osmotic potential of soil water. Agronomy Journal. 71, 746-752.

Stewart, J.I., Danielson, R.E., Hank, R.J., Jackson, E.B., Hagan, R.M., Pruitt, W.O., Jranklinand, W.T., Riley, J.P., 1977. Optimizing crop production through control of water and salinity lecels in the soil. Utah water Lab. PRWG 151-1. Logan. Utah.

Van Genuchten, M.Th., 1983. Analyzing crop salt tolerance data: model description and user’ manuao. Research report No. 120, U. S. Salinity Lab. Reerside. C.A.

 

 

Vaux, H.J.Jr., and Pruitt, W.V., 1983. Crop-water production functuins. In: Hillel, D. (ed.), Advances in Irrigation, Vol. 2, Academic Press, Inc., Mew, NY.
Yildirim, E., Taylor, A.G., Spittler, T.D., 2006. Ameliorative effects of biological treatments on growth of squash plants under salt stress. Scientia Horticulture. 111, 1–6.

Zolfagharan, A., 2005. Investigation the effects of applied water at different salinities on grain yield in sprinkler irrigation. Final Report of a Research Project in Agricultural Research and Education Division, Agricultural Engineering Research Institute. 84.1. [In Persian].