بررسی اثر شوری و کودهای زیستی بر عملکرد و اجزای عملکرد گیاه دارویی اسفرزه (.Plantago ovata Forsk) در شرایط مزرعه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری زراعت، گروه زراعت و اصلاح نباتات، دانشگاه بیرجند

2 دانشیار، گروه زراعت و اصلاح نباتات، دانشگاه بیرجند

3 استاد، گروه مهندسی علوم خاک، دانشگاه تهران

4 استادیار، مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

به‌منظور بررسی اثر تنش شوری، قارچ میکوریزا آربوسکولار و باکتری حل­کننده فسفات معدنی بر عملکرد و اجزاء عملکرد گیاه دارویی اسفرزه (Plantago ovata Forsk.) آزمایشی به­صورت اسپلیت پلات فاکتوریل بر پایه طرح بلوک­های کامل تصادفی با سه تکرار طراحی و اجرا شد. عامل شوری آب آبیاری در سه سطح 2.5 (شاهد)، 5 و 10 دسی زیمنس بر متر به‌عنوان فاکتور اصلی و دو عامل قارچ میکوریزا آربوسکولار شامل دو سطح (کاربرد قارچ Glomus intraradicesو عدم مصرف قارچ به­عنوان شاهد) و باکتری حل‌کننده فسفات نیز شامل دو سطح (کاربرد باکتری Pseudomonas fluorescens و عدم مصرف باکتری به­عنوان شاهد) به­صورت فاکتوریل در کرت­های فرعی بودند.مقایسه میانگین­ها نشان داد که بیشترین تعداد سنبله در بوته، تعداد دانه در سنبله، وزن هزار دانه و شاخص برداشت به ترتیب، 18.3 عدد در بوته، 43.4 عدد در سنبله، 1.5 گرم و 27.9 درصد در شوری 2.5 دسی زیمنس بر متر حاصل گردید. همچنین بررسی اثرات متقابل نتایج نشان داد که بیشترین عملکرد بیولوژیک و دانه درنتیجه ترکیب تیماری 2.5 دسی زیمنس بر متر و کاربرد قارچ Glomus intraradices و باکتریPseudomonas fluorescens به میزان 4539 و 1310 کیلوگرم در هکتار حاصل شد. درمجموع نتایج این بررسی نشان داد اگرچه شوری بالای آب آبیاری می­تواند تأثیر منفی بر عملکرد گیاه دارویی اسفرزه بگذارد، بهره ­گیری از کودهای بیولوژیک می­تواند بخشی از این اثرات منفی تنش را جبران نماید.

کلیدواژه‌ها


Abdul Jaleel, C., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., Panneerselvam, R., 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces. 60, 7–11.

Baghalian, K., 2008. Effect of soil and weather condition on quality and quantity of mucilage. MSc dissertation, Faculty of Agriculture, University of Tehran, Iran. [In Persian with English Summary].

Banaei-Asl, F., Farajzadeh, D., Bandehagh, A., Komatsu, S., 2016. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864(9), 1222-1236.

Bargaz, A., Nassar, R.M.A., Rady, M.M., Gaballah, M.S., Thompson, S.M., Brestic, M., Schmidhalter, U., Abdelhamid, M.T., 2016. Improved Salinity Tolerance by Phosphorus Fertilizer in Two Phaseolus vulgaris Recombinant Inbred Lines Contrasting in Their P‐Efficiency. Journal of Agronomy and Crop Science, 202, 497-507.

Bona, E., Cantamessa, S., Massa, N., Manassero, P., Marsano, F., Copetta, A., Lingua, G., D’Agostino, G., Gamalero, E., Berta, G., 2016. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza, 173, 1-11.

Cabral, C., Ravnskov, S., Tringovska, I., Wollenweber, B., 2016. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant and Soil, 25, 1-15.

Chadordozjedi, A., Ghasemi Golozani, K., Zafarani Moatar, P., 2011. Effect of salinity on biological yield and harvest index of (Plantago ovata Forsk.). National Conference on Climate Change and its Impact on Agriculture and the Environment, Oromiey, Agricultural and Natural Resources Research Center, http://www.civilica.com/Paper-NCCCIAE01-NCCCIAE01_014.html

Chakraborty, M.K., Patel, K.V., 1992. Chemical Composition of Isabgol (Plantago ovata Forsk.). Seed Journal and Food Science. 29, 389-90.

Chamekh, Z., Ayadi, S., Karmous, C., Trifa, Y., Amara, H., Boudabbous, K., Yousfi, S., Serret, M.D., Araus, J.L., 2016. Comparative effect of salinity on growth, grain yield, water use efficiency, δ 13 C and δ 15 N of landraces and improved durum wheat varieties. Plant Science, 251, 44-53.

Dehghani tafti, A.R., Alahdadi, I., Najafi, F., Kianmehr, M.H., 2014. Studying the effects of different rates of pelleted animal manure and urea levels and some micronutrients on yield and yield components of medicinal pumpkin (Cucurbita pepo var styriaca). Journal of Horticultural Science. 28(1), 62-70. [In Persian with English Summary].

Dutra, R.C., Campos, M.M., Santos, A.R., Calixto, J.B., 2016. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research. 112, 4-29.

Emam, Y., Hosseini, E., Rafiei, N., Pirasteh-Anosheh, H., 2013. Response of early growth and sodium and potassium concentration in ten barley (Hordeum vulgare L.) cultivars under salt stress conditions. Crop Physiology Journal. 19, 5-15. [In Persian with English Summary].

Fernandez-Banares, F., Hinojosa, J., Sanchez-Lombrana, J.L., Navarro, E., Martinez-Salmeron, J.F., Garcia-Puges, A., Gonzalez-Huix, F., Riera, J., Gonzalez-Lara, V., Dominguez-Abascal, F., Gine, J.J., 1999. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. The American journal of gastroenterology. 94(2), 427-433.

Garbaye, J., 1994. Helper bacteria-a new dimension to the mycorrhizal symbiosis. New Phytologist. 128, 197-210.

Garg, N., Bhandari, P., 2016. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regulation, 78(3), 371-387.

Hemming, D., 2012. Plant Sciences Reviews 2011. CABI Press. United Kingdon. 264p.

Jama-Rodzeńska, A., Bocianowski, J., Nowak, W., Ciszek, D., Nowosad, K., 2016. The influence of communal sewage sludge on the content of macroelements in the stem of selected clones of willow (Salix viminalis L.). Ecological Engineering. 87, 212-217.

Kapoor, R., Sharma, D., Bhatnagar, A.K., 2008. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116, 227-239.

Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K., Novak. J., 2006. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza. 16, 443- 446.

Malakouti, M.J., Keshavarz, P., Karimian, N., 2008. A Comprehensive Approach Towards Identification of Nutrients Deficiencies & Optimal Fertilization for Sustainable Agriculture. Tarbiat Modares University Press. 360p. [In Persian].

Malboobi, M.A., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S.,Yakhchali, B., Deljou, A., Morabbi Heravi, K., 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World Journal of Microbiol Biotechnology. 25, 1471-1477.

Miransari, M., 2016. Stress and Mycorrhizal Plant. In Recent Advances on Mycorrhizal Fungi Springer International Publishing, UK. 178p.

Narolia, G.P., Shivran, A.C., Reager, M.I., 2013. Growth and quality of isabgol (Plantago ovata Forsk.) influenced by phosphorus, PSB and zinc. International Journal of Plant Science. 8(1), 160-162.

Nekonam, M.S., Razmjoo, K.H., 2007. Effect of plant density on yield, yield components and effective medicine ingredients of blond psyllium (Plantago ovata Forsk.) accessions. International Journal of Agriculture and Biology, 4, 606-609.

Ochoa-Velasco, C.E., Valadez-Blanco, R., Salas-Coronado, R., Sustaita-Rivera, F., Hernández-Carlos, B., García-Ortega, S., Santos-Sánchez, N.F., 2016. Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Scientia Horticulturae. 201, 338-345.

Oliveira, C.A., Alves, V.M.C., Marriel, I.E., Gomes, E.A., Scotti, M.R., Carneiro, N.P., Guimaraes, C., Schaffert, R. E., Sa, N.M.H., 2009. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biotechnology. 41, 1782-1787.

Poryousof, M., Mazaheri, D., Chaeichi, M., Rahimi, A., Tavakoli, A., 2010. Effect of different soil fertilizing treatments on some of agro-morphological traits and mucilage of Isabgol (Plantago ovata Forsk). Electronical Journal of Crop Production. 2(3), 193-213. [In Persian with English Summary].

Rahimi, A., Jahansooz, M., Rahimian Mashhadi, H., 2014. Effect of drought stress and plant density on quality and quantity of Plantago ovata Forsk and Plantago psyllium L. Journal of Crop Production and Processing. 4(12), 143-156.

Ramrodi, M., Keykhajaleh, M., Galavi., M., Seghatoleslami, M.J., Baradaran. R., 2011. Effect of micronutrients application and irrigation regimes on quality and quantity of Isabgol (Plantago ovata Forsk.). Journal of Agroecology. 3(2). 219-226. [In Persian with English Summary].

Satir, O., Berberoglu, S., 2016. Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Research. 192, 134-143.

Stavros, D., Veresoglou, J., Liz, J., Shaw, S., Robin, S., 2011. Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant and Soil. 340, 481–490.

Tabatabaei, S., Ehsanzadeh, P., 2016. Comparative response of a hulled and a free-threshing tetraploid wheat to plant growth promoting bacteria and saline irrigation water. Acta Physiologiae Plantarum, 38(1), 1-17.

Tomar, O.S., Minhas, P.S., Dagar, J.C., 2005. Isabgol (Plantago Ovata Forsk): A Potential Crop for Saline Irrigation & Moderate Alkali Soils, Central Soil Salinity Research Institute. Press. 20p.

World Food Summit (WFS)., 1996. November 13-17, Rome, Italy. www.fao.org/wfs/homepage.htm.

Zamani, S.A., Nezami, M.T., Bybordi, A., Behdani, M., 2011. Effect of different NaCl salinity on antioxidant enzyme activity and relative water in winter canola (Brassica napus). Journal of Research in Agricultural Science. 7(1), 49-57. [In Persian with English Summary].

Zhu, X., Song, F., Liu, S., Liu, F., 2016. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza, 26(2), 133-140.