واکنش برخی هیبریدهای ذرت به تنش آبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه ایران.

2 دانشجوی سابق کارشناسی ارشد اصلاح نباتات، گروه بیوتکنولوژی و اصلاح نباتات، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

3 استادیار گروه بیوتکنولوژی و اصلاح نباتات، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

به‌منظور بررسی اثر تنش خشکی بر عملکرد و اجزای عملکرد برخی هیبریدهای ذرت و همچنین شناسایی ارقام متحمل خشکی، تعداد هشت هیبرید ذرت به‌صورت سه آزمایش (محیط) در شرایط نرمال و تنش خشکی در مرحله رشد رویشی و تنش خشکی در مرحله رشد زایشی در قالب طرح بلوک­های کامل تصادفی با 3 تکرار در مزرعه آموزشی مرکز آموزش جهاد کشاورزی ماهیدشت کرمانشاه در سال 1390 ارزیابی شدند. نتایج تجزیه واریانس مرکب داده ­ها نشان داد که اثر تنش آبی بر همه صفات اندازه‌گیری شده در سطح یک درصد معنی­دار بود. عملکرد دانه و برخی اجزای عملکرد دانه همانند وزن صد دانه، تعداد دانه در ردیف و تعداد ردیف در بلال بیشترین کاهش را در اثر تنش آبی داشتند به‌طوری‌که این صفات در شرایط تنش آبی در مرحله رشد زایشی نسبت به شرایط نرمال به ترتیب 28.8، 25.6، 19.1 و 17.6 درصد کاهش یافتند. هیبریدهای موردبررسی نیز ازنظر همه صفات اندازه‌گیری شده دارای تفاوت معنی­داری بودند. هیبریدهای KSC260، KSCc704 و KSC647 از عملکرد مناسبی برخوردار بودند به‌طوری‌که عملکرد آن‌ها در شرایط نرمال به ترتیب 15421، 14892 و 14167 کیلوگرم در هکتار و در شرایط تنش آبی در مرحله رشد زایشی به ترتیب 11977، 10479 و 11449 کیلوگرم در هکتار بود. هیبرید KSC260 علاوه بر داشتن عملکرد مناسب در شرایط نرمال و تنش آبی، 20 روز نسبت به هیبرید KSC704 زودرس­تر بود.

کلیدواژه‌ها


Banziger, M., Edmeades, G.O., Lafitte, H.R., 2002. Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance. Field Crops Research. 75, 223–233.

Barker, T.C., Campos, H., Cooper, M., Dolan, D., Edmeades, G.O., Habben, J., Schussler, J., Wright, D., Zinselmeier, C., 2005. Improving drought tolerance in maize. Plant Breeding Reviews. 25, 173-253.

Bouslama, M., Schapaugh, W. T., 1984. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science. 24, 933-937.

Chaudhary, H.K., Kaila, V., Rather, S.A., 2014. Maize. In: Pratap, A., Kumar, J., (eds), Alien Gene Transfer in Crop Plants: Achievements and Impacts, Springer, New York, USA.

Choukan, R.,  Heidari, A.,  Mohammadi, A.,  Haddad, M.H., 2008. Evaluation of Drought Tolerance in Grain Maize Hybrids Using Drought Tolerance Indices. Seed and Plant Improvement Journal. 22(3), 543-562. [In Persian with English Summary].

Choukan, R., Taherkhani, T., Ghannadha, M. R., Khodarahmi, M., 2006. Evaluation of drought tolerance in grain maize inbred lines using drought tolerance indices. Iranian Journal of Crop Sciences. 8(1), 79-89. [In Persian with English Summary].

Claassen, M.M., Shaw, R.H., 1970. Water deficit effects on corn: Grain components. Agronomy Journal. 62, 652-655.

Dehghanpour, Z., Sabzi, M.H.,  Mozayan, A.,  Hasanzadeh Moghaddam, H., Estakhr, A.,   Zamani, M.,   Sadeghi, F.,  Normohamadi, S.,  Mohseni, M., 2009. Fajr, A New Early Maturity Grain Maize Hybrid (KSC 260). Seed and Plant Improvement Journal.  25(2), 361-363. [In Persian with English Summary].

Edmeades, G., 2013. Progress in Achieving and Delivering Drought Tolerance in Maize - An Update. Update, ISAAA: Ithaca, NY.

Edmeades, G.O., Bolanos, J., Elings, A., Ribaut, J.M., Banziger, M., Westgate, M.E., 2000. The Role and regulation of the anthesis-silking interval in maize. In: Westgate, M.E., Boote, K.J., (eds.), Physiology and modeling kernel set in maize, Vol. 29, CSSA Special Publication, Wisconsin, 43-73.

Edmeades, G.O., Bänziger, M., Campos, H., Schussler, J., 2006. Improving tolerance to abiotic stresses in staple crops: a random or planned process? p. 293-309. In: Lamkey, K.R., Lee, M., (eds.), Plant breeding: the Arnel R. Hallauer International Symposium. Blackwell Publishing, Ames, IA.

Emam, Y., Niknejad, M., 2004. An Introduction to the Physiology of Crop Yield. Shiraz University Press. 571p. [In Persian].

FAOSTAT., 2010. Statistical Database of the Food and Agriculture Organization of the United Nations. FAO, Rome.

FAOSTAT., 2014. Statistical Database of the Food and Agriculture Organization of the United Nations. FAO, Rome.

Fernandez, G.C., 1992. Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the Symposium of AVRDC, 13-16 Aug. Taiwan.

Fisher, R.A., Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research. 29, 897-912.

Ghazian Tafrishi, Sh., Ayenehband, A., Tavakoli, H., Khavari Khorasani, S., Joleini, M., 2012. Investigating sweet corn (Zea mays L.) yield determining traits under normal irrigation and water deficit stress, using multivariate statistical methods. Environmental stress in crop sciences. 5 (1), 95-98. [In Persian with English Summary].

Golbashy, M., Ebrahimi, M., Khavari Khorasani, S., Choukan, R., 2010. Comparison of commercial and new corn hybrids (Zea mays L.) under drought stress and normal irrigation conditions. Environmental Stresses in Crop Sciences. 3(1), 47-57. [In Persian with English Summary].

Grant, R.F., Jackson, B.S., kiniry, J.R., Arkin, G.F., 1989. Water deficit timing Effects on yield components in maize. Agronomy Journal. 81, 61-65.

O’Neill, P.M., Shanahan, J.F., Schepers, J.S., Caldwell, B., 2004. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agronomy Journal. 96, 1660–1667.

Magorokosho, C., Pixley, K.V., Tongoona, P., 2003. Selection for Drought Tolerance in two Tropical Maize Populations. African Crop Science Journal. 11, 151-161.

Mostafavi, Kh., Firoozi, M., Mousavi, SMN., 2013. Effect of drought stress on yield and yield components of maize hybrids. Scientific Research and Essays. 8(24), 1145-1149.

Rabbani, J., Emam, Y., 2012. Yield response of maize hybrids to drought Stress at Different growth stages. Journal of Crop Production and Processing. 1(2), 65-78. [In Persian with English Summary].

Richards, R.A., 1996. Defining selection criteria to improve yield under drought. Plant Growth Regularity. 157-166.

Rosielli, A., Hamblin, J., 1981. Theoritical aspects of selection for yield in stress and non- stress environment. Crop Science. 21, 493-501.

Russell, W.A., 1984. Agronomic performance of maize cultivars representing different eras of breeding. Maydica. 29, 375-390.

Sayadi Maazou, AD, Tu, J., Qiu, J., Liu, Z., 2016. Breeding for Drought Tolerance in Maize (Zea mays L.). American Journal of Plant Sciences. 7, 1858-1870

Seghatoleslami, M.J., Kafi, M., Majidi, E., 2008. Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pakistan Journal of Botany. 40(4), 1427- 1432.

Seyedzavar, J., Norouzi, M., Aharizad, S., tahmasebpour, B., 2014. Evaluation of correlation among traits in corn hybrids under drought stress conditions. International Journal of Farming and Allied Sciences. 3(10), 1088-1091.

Tabatabaei, S.A., Shakeri, E., 2016. Effect of drought stress on maize hybrids yield and determination of the best hybrid using drought tolerance indices. Environmental stress in crop sciences. 8(1), 121-125. [In Persian with English Summary].

Von Braun, J., Byerlee, D., Chartres, C., Lumpkin, T., Olembo, N., Waage, J.J., 2010. A Draft Strategy and Results Framework for the CGIAR. World Bank, CGIAR, Washington DC, USA.